【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連接CE.
(1)求證:BD=EC;
(2)若∠E=50°,求∠BAO的大。
【答案】(1)證明見解析(2)40°
【解析】(1)證明:∵四邊形ABCD是菱形,∴AB=CD,AB∥CD。
又∵BE=AB,∴BE=CD,BE∥CD!嗨倪呅蜝ECD是平行四邊形。
∴BD=EC。
(2)解:∵四邊形BECD是平行四邊形,∴BD∥CE,∴∠ABO=∠E=50°。
又∵四邊形ABCD是菱形,∴AC丄BD!唷螧AO=90°﹣∠ABO=40°
(1)根據(jù)菱形的對邊平行且相等可得AB=CD,AB∥CD,然后證明得到BE=CD,BE∥CD,從而證明四邊形BECD是平行四邊形,再根據(jù)平行四邊形的對邊相等即可得證。
(2)根據(jù)兩直線平行,同位角相等求出∠ABO的度數(shù),再根據(jù)菱形的對角線互相垂直可得AC⊥BD,然后根據(jù)直角三角形兩銳角互余計算即可得解。
科目:初中數(shù)學 來源: 題型:
【題目】一輛慢車和一輛快車沿相同路線從A地到B地,所行駛的路程與時間的函數(shù)圖象如圖所示,下列說法正確的有()個
①快車追上慢車需6小時
②慢車比快車早出發(fā)2小時
③快車速度為46km/h
④慢車速度為46km/h
⑤AB兩地相距828km
⑥快車14小時到達B地
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)分別填入相應的集合里.
﹣4,﹣|﹣|,0,,﹣3.14,2019,﹣(+5),+1.88,
(1)正數(shù)集合:{ _____…};(2)負數(shù)集合:{__________…};
(3)分數(shù)集合:{_______…};(4)非負整數(shù)集合:{_______…}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩艘海監(jiān)船剛好在某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍船只停在C處海域,AB=60(+3)海里,在B處測得C在北偏東45°方向上,A處測得C在北偏西30°方向上,在海岸線AB上有一等他D,測得AD=100海里.
(1)分別求出AC,BC(結果保留根號)
(2)已知在燈塔D周圍80海里范圍內有暗礁群,在A處海監(jiān)船沿AC前往C處盤看,圖中有無觸礁的危險?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果過拋物線與y的交點作y軸的垂線與該拋物線有另一個交點,并且這兩點與該拋物線的頂點構成正三角形,那么我們稱這個拋物線為正三角拋物線.
(1)拋物線 正三角拋物線;(填“是”或“不是”)
(2)如圖,已知二次函數(shù)(m > 0)的圖像是正三角拋物線,它與x軸交于A、B兩點(點A在點B的左側),點E在y軸上,當∠AEB=2∠ABE時,求出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于的一元二次方程.
(1)用含有的式子表示判別式________;
(2)當在什么范圍內取值時,方程有兩個不相等的實數(shù)根;
(3)若該方程有兩個不相等的實數(shù)根,,問當取何值時.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校對七年級全體學生進行了期中測試,并隨機抽取了部分學生的測試成績作為樣本進行分析,繪制成了下面的條形圖和扇形圖(圖1和圖2均不完整)請根據(jù)圖中所給的信息,解答下列問題:
(1)求抽取學生的人數(shù),請將表示成績類別為“中”的條形圖補充完整;
(2)求扇形圖中表示成績類別為“優(yōu)“的扇形所占的百分數(shù);
(3)如果該校七年級共有300人參加期中測試,請估計成績在“良”及“良”以上的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線與x軸交于A,B兩點,與y軸交于點C,頂點為D,點C’是點C關于對稱軸的對稱點,過點D作DG⊥x軸交x軸于點G,交線段AC于點E。
(1)連接DC,求△DCE的周長;
(2)如圖2,點P是線段AC上方拋物線上的一點,過P作PH⊥x 軸交x軸于點H,交線段AC于點Q,當四邊形PCQC’的面積最大時,在線段PH上有一動點M,在線段DG上有一動點N,在y軸上有一動點E,且滿足MN⊥PH,連接AM,MN,NE,DE,求AM+MN+NE+DE的最小值;
(3)如圖3,將拋物線沿直線AC進行平移,平移過程中的點D記為D’,點C記為C’,連接D’C’所形成的直線與x軸相交于點G,請問是否存在這樣的點G,使得△D’OG為等腰三角形?若存在,求出此時OG的長度,若不存在,請說明理由。
圖1 圖2
圖3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E、F分別在BC和CD上,下列結論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正確的序號是 (把你認為正確的都填上).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com