【題目】如圖,△ABC中,∠ACB=90°,AC=5,BC=12,CO⊥AB于點(diǎn)O,D是線段OB上一點(diǎn),DE=2,ED∥AC(∠ADE<90°),連接BE、CD.設(shè)BE、CD的中點(diǎn)分別為P、Q.
(1)求AO的長(zhǎng);
(2)求PQ的長(zhǎng);
(3)設(shè)PQ與AB的交點(diǎn)為M,請(qǐng)直接寫出|PM﹣MQ|的值.
【答案】(1) (2) (3)
【解析】試題分析: (1)由△ABC∽△ACO,得=,由此即可求出OA.
(2)如圖2中,取BD中點(diǎn)F,CD中點(diǎn)Q,連接PF、QF,在Rt△PFQ中,求出PF,QF即可解決問題.
(3)如圖3中,取AD中點(diǎn)G,連接GQ,由PF∥GQ,推出△PMF∽△QMG,推出==,由PM+QM=,可以求出PM,QM,即可解決問題.
試題解析:
解:(1)如圖1中,
∵CO⊥AB,
∴∠AOC=∠ACB=90°,∵∠A=∠A,
∴△ABC∽△ACO,
∴=,
∵AB===13,
∴OA==.
(2)如圖2中,取BD中點(diǎn)F,CD中點(diǎn)Q,連接PF、QF,
則PF∥ED,FQ∥BC,PF⊥FQ,且PF=ED=1,FQ=BC=6,
在Rt△PFQ中,PQ===.
(3)如圖3中,取AD中點(diǎn)G,連接GQ,
∵GQ∥AC,ED∥AC,PF∥ED,
∴PF∥GQ,
∴△PMF∽△QMG,
∴==,
∵PM+QM=,
∴PM=,MQ=,
∴|PM﹣QM|=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn),以格點(diǎn)為頂點(diǎn)分別按下列要求畫三角形(涂上陰影).
(1)在圖1中,畫一個(gè)三角形,使它的三邊長(zhǎng)都是有理數(shù);
(2)在圖2,圖3中,分別畫一個(gè)直角三角形,使它的三邊長(zhǎng)都是無(wú)理數(shù).(兩個(gè)三角形不全等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動(dòng)點(diǎn),過點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.
(1)求該拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=BC=CD=AD,∠BAD=∠B=∠C=∠D=90°,點(diǎn)E、F分別在正方形ABCD的邊DC、BC上,AG⊥EF且 AG=AB,垂足為G,則:
(1)△ABF與△ AGF全等嗎?說明理由;
(2)求∠EAF的度數(shù);
(3)若AG=4,△AEF的面積是6,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售A、B兩種不同型號(hào)的電風(fēng)扇,每種型號(hào)電風(fēng)扇的購(gòu)買單價(jià)分別為每臺(tái)310元,460元.
(1)若某單位購(gòu)買A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且恰好支出20000元,求A,B兩種型號(hào)電風(fēng)扇各購(gòu)買多少臺(tái)?
(2)若購(gòu)買A,B兩種型號(hào)的電風(fēng)扇共50臺(tái),且支出不超過18000元,求A種型號(hào)電風(fēng)扇至少要購(gòu)買多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用甲、乙兩種原料配制某種飲料,這兩種原料的維生素C含量及購(gòu)買兩種原料的價(jià)格如表:
原料 | 甲 | 乙 |
維生素C的含量/(單位/kg) | 600 | 100 |
原料價(jià)格/(元/kg) | 8 | 4 |
現(xiàn)配制這種飲料10千克,要求至少含有4200單位的維生素C,且購(gòu)買甲、乙兩種原料的費(fèi)用不超過72元,求所需甲種原料的質(zhì)量應(yīng)滿足的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備組織290名學(xué)生進(jìn)行野外考察活動(dòng),行李件數(shù)比學(xué)生人數(shù)的一半還少45.學(xué)校計(jì)劃租用甲、乙兩種型號(hào)的汽車共8輛,經(jīng)了解,甲種汽車每輛最多能載40人和10件行李,乙種汽車最多能載30人和20件行李.
(1)求行李有多少件?
(2)現(xiàn)計(jì)劃租用甲種汽車x輛,請(qǐng)你幫學(xué)校設(shè)計(jì)所有可能的租車方案.
(3)如果甲、乙兩種汽車每輛的租車費(fèi)分別是2000元、1800元,請(qǐng)你選擇最省錢的一種租車方案,并求出至少的費(fèi)用是多少元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com