【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說(shuō)明理由;
(3)若BC=8,AD=10,求CD的長(zhǎng).
【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、菱形;理由見(jiàn)解析;(3)、2
【解析】
試題分析:(1)、根據(jù)直徑得出∠ABD=∠ACD=90°,從而的得出Rt△ABD≌Rt△ACD,然后得出答案;(2)、首先證明△BED≌△CEF,得出CF=BD,即四邊形BFCD是平行四邊形,根據(jù)BD=CD得出菱形;(3)、根據(jù)AD是直徑,AD⊥BC,BE=CE得出CE2=DEAE,設(shè)DE=x,然后求出x的值,根據(jù)Rt△CED的勾股定理得出CD的長(zhǎng)度.
試題解析:(1)、∵AD是直徑, ∴∠ABD=∠ACD=90°,
在Rt△ABD和Rt△ACD中,∴Rt△ABD≌Rt△ACD, ∴∠BAD=∠CAD,∵AB=AC,∴BE=CE
(2)、四邊形BFCD是菱形.
∵AD是直徑,AB=AC,∴AD⊥BC,BE=CE, ∵CF∥BD,∴∠FCE=∠DBE,
在△BED和△CEF中, ∴△BED≌△CEF,∴CF=BD, ∴四邊形BFCD是平行四邊形,
∵∠BAD=∠CAD,∴BD=CD, ∴四邊形BFCD是菱形
(3)、∵AD是直徑,AD⊥BC,BE=CE, ∴CE2=DEAE,設(shè)DE=x,∵BC=8,AD=10,∴42=x(10﹣x),
解得:x=2或x=8(舍去) 在Rt△CED中,CD===2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值
(1)4x﹣x2+2x3﹣(3x2+x+2x3),其中x=3.
(2)4x2﹣xy﹣(y2+2x2)+2(3xy﹣y2),其中x=5,y=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(10,0),點(diǎn)B的坐標(biāo)為(8,0),點(diǎn)C,D在以OA為直徑的半圓M上,且四邊形OCDB是平行四邊形,則點(diǎn)C的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)的是( )
A.有理數(shù)B.無(wú)理數(shù)C.實(shí)數(shù)D.整數(shù)和分?jǐn)?shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將△ABC經(jīng)過(guò)一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
利用網(wǎng)格點(diǎn)和三角板畫圖或計(jì)算:
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積為______.
【答案】(1)作圖見(jiàn)解析;(2)作圖見(jiàn)解析;(3)作圖見(jiàn)解析;(4)8.
【解析】解:(1)如圖所示: 即為所求;
(2)如圖所示:CD就是所求的中線;
(3)如圖所示:AE即為BC邊上的高;
(4).
故的面積為8.
因此,本題正確答案是:8.
【題型】解答題
【結(jié)束】
24
【題目】如圖,⊿ABC中,∠A=40°,∠ACB=104°,BD為AC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1) 如圖1,MA1∥NA2,則∠A1+∠A2=_________度.
如圖2,MA1∥NA3,則∠A1+∠A2+∠A3=_________ 度.
如圖3,MA1∥NA4,則∠A1+∠A2+∠A3+∠A4=_________度.
如圖4,MA1∥NA5,則∠A1+∠A2+∠A3+∠A4+∠A5=_________度.
如圖5,MA1∥NAn,則∠A1+∠A2+∠A3+…+∠An=_________ 度.
(2) 如圖,已知AB∥CD,∠ABE和∠CDE的平分線相交于F,∠E=80°,求∠BFD的度數(shù).
【答案】(1) 180; 360; 540;720;180(n-1);(2)140°.
【解析】試題分析:(1)首先過(guò)各點(diǎn)作MA 1 的平行線,由MA 1 ∥NA 2 ,可得各線平行,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可求得答案;
(2)由(1)中的規(guī)律可得∠ABE+∠E+∠CDE=360°,所以∠ABE+∠CDE=360°-80°=280°,又因?yàn)?/span>BF、DF平分∠ABE和∠CDE,所以∠FBE+∠FDE=140°,又因?yàn)樗倪呅蔚膬?nèi)角和為360°,進(jìn)而可得答案.
試題解析:(1)如圖1,
∵M(jìn)A 1 ∥NA 2 ,
∴∠A 1 +∠A 2 =180°.
如圖2,過(guò)點(diǎn)A 2 作A 2 C 1 ∥A 1 M,
∵M(jìn)A 1 ∥NA 3 ,
∴A 2 C 1 ∥A 1 M∥NA 3 ,
∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 3 =180°,
∴∠A 1 +∠A 2 +∠A 3 =360°.
如圖3,過(guò)點(diǎn)A 2 作A 2 C 1 ∥A 1 M,過(guò)點(diǎn)A 3 作A 3 C 2 ∥A 1 M,
∵M(jìn)A 1 ∥NA 3 ,
∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3 ,
∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 4 =180°,
∴∠A 1 +∠A 2 +∠A 3 +∠A 4 =540°.
如圖4,過(guò)點(diǎn)A 2 作A 2 C 1 ∥A 1 M,過(guò)點(diǎn)A 3 作A 3 C 2 ∥A 1 M,
∵M(jìn)A 1 ∥NA 3 ,
∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3 ,
∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 3 A 4 C 3 =180°,∠C 3 A 4 A 5 +∠A 5 =180°,
∴∠A 1 +∠A 2 +∠A 3 +∠A 4 +∠A 5 =720°;
從上述結(jié)論中你發(fā)現(xiàn)了規(guī)律:如圖5,MA 1 ∥NA n ,則∠A 1 +∠A 2 +∠A 3 +…+∠A n =180(n-1)度,
故答案為:180,360,540,720,180(n-1);
(2)由(1)可得∠ABE+∠E+∠CDE=360°,
∵∠E=80°,
∴∠ABE+∠CDE=360°-80°=280°,
又∵BF、DF平分∠ABE和∠CDE,
∴∠FBE+∠FDE=140°,
∵∠FBE+∠E+∠FDE+∠BFD=360°,
∴∠BFD=360°-80°-140°=140°.
【點(diǎn)睛】本題考查了平行線的性質(zhì):兩直線平行,同旁內(nèi)角互補(bǔ)、四邊形的內(nèi)角和是360°,解題的關(guān)鍵是,(1)小題正確添加輔助線,發(fā)現(xiàn)規(guī)律:MA 1 ∥NA n ,則∠A 1 +∠A 2 +∠A 3 +…+∠A n =180(n-1)度;(2)小題能應(yīng)用(1)中發(fā)現(xiàn)的規(guī)律.
【題型】解答題
【結(jié)束】
28
【題目】已知如圖1,線段AB、CD相交于點(diǎn)O,連結(jié)AC、BD,我們把形如圖1的圖形稱之為“8字形”,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮聰明才智,解決以下問(wèn)題:
(1)在圖1中,請(qǐng)寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù)有 個(gè);
(3)在圖2中,若∠B=76°,∠C=80°,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N利用(1)的結(jié)論,試求∠P的度數(shù);
(4)在圖3中,如果∠B和∠C為任意角,并且AP和DP分別是∠CAB和∠BDC的三等分線,即∠PAO=∠CAO, ∠BDP=∠BOD,那么∠P與∠C、∠B之間存在的數(shù)量關(guān)系是 (直接寫出結(jié)論即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于a,b的多項(xiàng)式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab項(xiàng),則m=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:某禮品制造工廠接受一批玩具熊的訂貨任務(wù),按計(jì)劃天數(shù)生產(chǎn),如果每天生產(chǎn)20個(gè)玩具熊,則比訂貨任務(wù)少100個(gè);如果每天生產(chǎn)23個(gè)玩具熊,則可以超過(guò)訂貨任務(wù)20個(gè).請(qǐng)求出該廠計(jì)劃幾天完成任務(wù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com