如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OA比OC大2.E為BC的中點(diǎn),以O(shè)E為直徑的⊙O′交軸于D點(diǎn),過(guò)點(diǎn)D作DF⊥AE于點(diǎn)F。
(1)求OA、OC的長(zhǎng);
(2)求證:DF為⊙O′的切線(xiàn);
(3)小明在解答本題時(shí),發(fā)現(xiàn)△AOE是等腰三角形。由此,他斷定:“直線(xiàn)BC上一定存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形,且點(diǎn)P一定在⊙O′外”。你同意他的看法嗎?請(qǐng)充分說(shuō)明理由。
(1)OC=3, OA=5
(2)證明略
(3)略
解析:(1)在矩形OABC中,設(shè)OC=x 則OA=x+2,依題意得
解得:
(不合題意,舍去) ∴OC=3, OA=5 ……………3分
(2)連結(jié)O′D,在矩形OABC中,OC=AB,∠OCB=∠ABC=90,CE=BE=
∴ △OCE≌△ABE ∴EA=EO ∴∠EOA=∠EAO
在⊙O′中, ∵ O′O= O′D ∴∠EOA=∠O′DO
∴∠O′DO =∠EAO ∴O′D∥AE,
∵DF⊥AE ∴ DF⊥O′D
又∵點(diǎn)D在⊙O′上,O′D為⊙O′的半徑 ,∴DF為⊙O′切線(xiàn).……………6分
不同意. 理由如下:
①當(dāng)AO=AP時(shí),
以點(diǎn)A為圓心,以AO為半徑畫(huà)弧交BC于P1和P4兩點(diǎn)
過(guò)P1點(diǎn)作P1H⊥OA于點(diǎn)H,P1H = OC = 3,∵A P1= OA = 5
∴A H = 4,∴OH =1
求得點(diǎn)P1(1,3) 同理可得:P4(9,3)…………8分
②當(dāng)OA=OP時(shí),同上可求得::P2(4,3),P3(4,3)
因此,在直線(xiàn)BC上,除了E點(diǎn)外,既存在⊙O′內(nèi)的點(diǎn)P1,又存在⊙O′外的點(diǎn)P2、P3、P4,它們分別使△AOP為等腰三角形.……………10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com