【題目】如圖,拋物線與x軸相交的于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)直接寫出A,B,C三點(diǎn)的坐標(biāo)和拋物線的對稱軸;
(2)連接BC,與拋物線的對稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個動點(diǎn)(P不與C,B兩點(diǎn)重合),過點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時,四邊形PEDF為平行四邊形.
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式;當(dāng)m為何值時,S有最大值.
【答案】(1)A(﹣1,0),B(3,0),C(0,3),拋物線對稱軸為直線x=1;(2)①m=2;②S=(0<m<3),則當(dāng)m=時,S取得最大值.
【解析】
試題分析:(1)對于拋物線,令x=0,得到y(tǒng)=3;
令y=0,得到,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,則A(﹣1,0),B(3,0),C(0,3),拋物線對稱軸為直線x=1;
(2)①設(shè)直線BC的函數(shù)解析式為y=kx+b,把B(3,0),C(0,3)分別代入得:,解得:k=﹣1,b=3,∴直線BC的解析式為y=﹣x+3,當(dāng)x=1時,y=﹣1+3=2,∴E(1,2),當(dāng)x=m時,y=﹣m+3,∴P(m,﹣m+3),令中x=1,得到y(tǒng)=4,∴D(1,4),當(dāng)x=m時,,∴F(m,),∴線段DE=4﹣2=2,∵0<m<3,∴yF>yP,∴線段PF=﹣(﹣m+3)=.連接DF,由PF∥DE,得到當(dāng)PF=DE時,四邊形PEDF為平行四邊形,由,得到m=2或m=1(不合題意,舍去),則當(dāng)m=2時,四邊形PEDF為平行四邊形;
②連接BF,設(shè)直線PF與x軸交于點(diǎn)M,由B(3,0),O(0,0),可得OB=OM+MB=3,∵S=S△BPF+S△CPF=PFBM+PFOM=PF(BM+OM)=PFOB,∴S=×3(),即S=(0<m<3),則當(dāng)m=時,S取得最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前節(jié)能燈在城市已基本普及,今年山東省面向縣級及農(nóng)村地區(qū)推廣節(jié)能燈,為響應(yīng)號召,某商場計(jì)劃購進(jìn)甲、乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進(jìn)價、售價如下表:
進(jìn)價(元/只) | 售價(元/只) | |
甲 | 25 | 30 |
乙 | 45 | 60 |
(1)如何進(jìn)貨,進(jìn)貨款恰好為46000元?
(2)如何進(jìn)貨,商場銷售完節(jié)能燈時獲利最多且不超過進(jìn)貨價的30%,此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某織布廠有 150名工人,為了提高經(jīng)濟(jì)效益,增設(shè)制衣項(xiàng)目,已知每人每天能織布30m,或利用所織布制衣 4 件,制衣一件需要布 1.5m,將布直接出售,每米布可獲利 2 元,將布制成衣后出售,每件可獲利 25 元,若每名工人只能做一項(xiàng)工作,且不計(jì)其他因素,設(shè)安排 x 名工人制衣.
(1)一天中制衣所獲利潤 元(用含 x 的式表示);
(2)一天中銷售剩余的布所獲利潤為 元(用含 x 的式表示);
(3)一天當(dāng)中安排 名工人制衣時,所獲利潤為 13712 元;
(4)一年按 300 天計(jì)算,一年中這個工廠所獲利潤最大值為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2+x﹣3=0的根的情況是( )
A.有兩個不相等的實(shí)數(shù)根
B.有兩個相等的實(shí)數(shù)根
C.只有一個實(shí)數(shù)根
D.沒有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P、Q是反比例函數(shù)y= 圖像上的兩點(diǎn),PA⊥y軸于點(diǎn)A,QN⊥x軸于點(diǎn)N,作PM⊥x軸于點(diǎn)M,QB⊥y軸于點(diǎn)B,連接PB、QM,△ABP的面積記為S1 , △QMN的面積記為S2 , 則S1S2 . (填“>”或“<”或“=”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°,AB的中垂線DE交AC于D,交AB于E,下述結(jié)論:①BD平分∠ABC;②AD=BD=BC;③△BDC的周長等于AB+BC;④D是AC中點(diǎn).其中正確的命題序號是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com