在平面直角坐標系中,直線y=kx+b(k為常數(shù)且k≠0)分別交x軸、y軸于點A、B,⊙O精英家教網(wǎng)半徑為
5
個單位長度.如圖,若點A在x軸正半軸上,點B在y軸正半軸上,且OA=OB.
(1)求k的值;
(2)若b=4,點P為直線y=kx+b上的動點,過點P作⊙O的切線PC、PD,切點分別為C、D,當PC⊥PD時,求點P的坐標.
分析:認真讀題,①由題意可得B的坐標,又由OA=OB可得到點A的坐標,把坐標代入解析式消去b,可求得k的值;②要求p點的坐標,可先設出坐標,找關系列出方程可求解,要列方程必須先求出OP的大小,于是借助等腰直角三角形進行解答,答案可得.
解答:精英家教網(wǎng)解:(1)根據(jù)題意得:B的坐標為(0,b),∴OA=OB=b,∴A的坐標為
(b,0),代入y=kx+b得k=-1.

(2)過P作x軸的垂線,垂足為F,連接OD,OP,
∵PC、PD是⊙O的兩條切線,∠CPD=90°,
∴∠OPD=∠OPC=
1
2
∠CPD=45°,
∵∠PDO=90°,∠POD=∠OPD=45°,
∴在Rt△POD中,OD=PD=
5
,
利用勾股定理得出:OP=
10

∵P在直線y=-x+4上,設P(m,-m+4),則OF=m,PF=-m+4,
∵∠PFO=90°,OF2+PF2=PO2,
∴m2+(-m+4)2=(
10
2,
解得m=1或3,
∴P的坐標為(1,3)或(3,1)
答:①k的值為-1;②P的坐標為(1,3)或(3,1).
點評:本題考查了一次函數(shù)的綜合應用;有函數(shù)參與的幾何題往往要找出等量關系后利用函數(shù)的解析式列方程進行解答,這種數(shù)形結合的思想非常重要,要認真掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關于y軸對稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
(1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關系式.
(2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1;
(2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應點M′的坐標為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習冊答案