【題目】如圖,已知正方形 的邊長為 ,點 、 分別在邊 、 上,且 , 、 交于點 .下列結論:,,, 中,正確的有________________

【答案】①③④

【解析】

由正方形ABCD的邊長為4,AE=BF=1,利用SAS易證得△EBC≌△FCD,然后全等三角形的對應角相等,易證得①∠DOC=90°正確;②由線段垂直平分線的性質與正方形的性質,可得②錯誤;易證得∠OCD=DFC,即可求得③正確;由①易證得④正確.

解:∵正方形ABCD的邊長為4,

BC=CD=4,∠B=DCF=90°,

AE=BF=1,

BE=CF=4-1=3

△EBC△FCD中,

,

∴△EBC≌△FCDSAS),

∴∠CFD=BEC,

∴∠BCE+BEC=BCE+CFD=90°,

∴∠DOC=90°;故①正確;

連接DE,如圖所示:

OC=OE,

DFEC,

CD=DE,

CD=ADDE(矛盾),故②錯誤;

∵∠OCD+CDF=90°,∠CDF+DFC=90°,

∴∠OCD=DFC,

tanOCD=tanDFC=,故③正確;

∵△EBC≌△FCD,

SEBC=SFCD,

SEBC-SFOC=SFCD-SFOC,

SODC=S四邊形BEOF.故④正確;

故答案為:①③④.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,用同樣規(guī)格的黑白兩色的正方形瓷磚鋪設長方形地面,觀察下列圖形并解答問題.

1)在第a個圖中,共有   塊白瓷磚和   塊黑瓷磚(用含a的代數(shù)式表示);

2)若按上圖的方式鋪一塊長方形地面共用了420塊瓷磚,求此時a的值;

3)已知白瓷磚每塊6元,黑瓷磚每塊8元,某工廠按如圖方式鋪設廠房地面,其中黑瓷磚的費用比白瓷磚的費用多924元,問白瓷磚和黑瓷磚各用了多少塊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某中學準備在校園里利用圍墻的一段,再砌三面墻,圍成一個矩形花園ABCD(圍墻MN最長可利用25m),現(xiàn)在已備足可以砌50m長的墻的材料,試設計一種砌法,使矩形花園的面積為300m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于第一象限CD兩點,坐標軸交于A、B兩點,連結OC,ODO是坐標原點).

1)利用圖中條件,求反比例函數(shù)的解析式和m的值;

2)雙曲線上是否存在一點P,使得POCPOD的面積相等?若存在,給出證明并求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC≌△ABD,點E在邊AB上,CE∥BD,連接DE

求證:1∠CEB=∠CBE;

2)四邊形BCED是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,對角線的垂直平分線分別交、、于點、、,連接.

1)求證:四邊形為菱形.

2)若,,求菱形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ADBC中,∠ACB=ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關系.

小吳同學探究此問題的思路是:將BCD繞點D,逆時針旋轉90°AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=CD

簡單應用:

1)在圖①中,若AC=2,BC=4,則CD=

2)如圖③,AB是⊙O的直徑,點C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的長.

拓展規(guī)律:

3)如圖4,ABC中,∠ACB=90°,AC=BC,點PAB的中點,若點E滿足AE=AC,CE=CA,且點E在直線AC的左側時,點QAE的中點,則線段PQAC的數(shù)量關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商品的進價為每件40元,如果售價為每件50元,每個月可賣出210件;如果售價超過50元但不超過80元,每件商品的售價每上漲1元,則每個月少賣1件;如果售價超過80元后,若再漲價,則每漲1元每月少賣3件.設每件商品的售價為x元,每個月的銷售量為y件.

(1)yx的函數(shù)關系式并直接寫出自變量x的取值范圍;

(2)設每月的銷售利潤為W,請直接寫出Wx的函數(shù)關系式;

(3)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

同步練習冊答案