【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如下表:

X

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減小.
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的個(gè)數(shù)為( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

【答案】B
【解析】解:①由圖表中數(shù)據(jù)可得出:x=1時(shí),y=5,所以二次函數(shù)y=ax2+bx+c開(kāi)口向下,a<0;又x=0時(shí),y=3,所以c=3>0,所以ac<0,故③正確;②∵二次函數(shù)y=ax2+bx+c開(kāi)口向下,且對(duì)稱(chēng)軸為x= =1.5,∴當(dāng)x≥1.5時(shí),y的值隨x值的增大而減小,故②錯(cuò)誤;③∵x=3時(shí),y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b﹣1)x+c=0的一個(gè)根,故③正確;④∵x=﹣1時(shí),ax2+bx+c=﹣1,∴x=﹣1時(shí),ax2+(b﹣1)x+c=0,∵x=3時(shí),ax2+(b﹣1)x+c=0,且函數(shù)有最大值,∴當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0,故④正確.

所以答案是:B.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解二次函數(shù)的性質(zhì)(增減性:當(dāng)a>0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而減。粚(duì)稱(chēng)軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱(chēng)軸左邊,y隨x增大而增大;對(duì)稱(chēng)軸右邊,y隨x增大而減小),還要掌握二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系(二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線(xiàn)開(kāi)口向上; a<0時(shí),拋物線(xiàn)開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線(xiàn)與y軸的交點(diǎn)坐標(biāo):(0,c))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列證明:如圖,已知AD⊥BC,EF⊥BC,∠1=∠2.

求證: DG∥BA.

證明:∵AD⊥BC,EF⊥BC ( 已知 )

∴∠EFB=90°,∠ADB=90°(_______________________ )

∴∠EFB=∠ADB ( 等量代換 )

∴EF∥AD ( _________________________________ )

∴∠1=∠BAD (________________________________________)

∵∠1=∠2 ( 已知)

(等量代換)

∴DG∥BA. (__________________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題背景)

如圖1,等腰ABC中,ABAC,∠BAC120°,作ADBC于點(diǎn)D,則DBC的中點(diǎn),∠BADBAC60°.

(問(wèn)題應(yīng)用)

如圖2,ABCADE都是等腰三角形,∠BAC=∠DAE120°,D、E、C三點(diǎn)共線(xiàn),連接BD

1)求證:ADB≌△AEC;

2)直接寫(xiě)出AD、BDCD之間的數(shù)量關(guān)系;

如圖3,菱形ABCD中,∠ABC120°,在ABC內(nèi)部作射線(xiàn)BM,作點(diǎn)C關(guān)于BM的對(duì)稱(chēng)點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE、CF

1)判斷EFC的形狀,并給出證明.

2)若AE5,CE2,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(觀(guān)察)方程的解是的解是;

的解是的解是

(發(fā)現(xiàn))根據(jù)你的閱讀回答問(wèn)題:

(1)的解為_(kāi)______;

(2)關(guān)于的方程的解為_(kāi)______(用含的代數(shù)式表示),并利用“方程的解的概念”驗(yàn)證.

(類(lèi)比)

(3)關(guān)于的方程的解為_(kāi)________(用含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB,CD交于點(diǎn)OOB平分∠DOE,OF是∠BOC的角平分線(xiàn).

(1)說(shuō)明:∠AOC=∠BOE;

(2)若∠AOC46°,求∠EOF的度數(shù);

(3)若∠EOF30°,求∠AOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】轉(zhuǎn)化是數(shù)學(xué)中的一種重要思想,即把陌生的問(wèn)題轉(zhuǎn)化成熟悉的問(wèn)題,把復(fù)雜的問(wèn)題轉(zhuǎn)化成簡(jiǎn)單的問(wèn)題,把抽象的問(wèn)題轉(zhuǎn)化為具體的問(wèn)題.

(1)請(qǐng)你根據(jù)已經(jīng)學(xué)過(guò)的知識(shí)求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);

(2)若對(duì)圖(1)中星形截去一個(gè)角,如圖(2),請(qǐng)你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);

(3)若再對(duì)圖(2)中的角進(jìn)一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫(xiě)出結(jié)論,不需要寫(xiě)出解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,半徑OA⊥OB,過(guò)點(diǎn)OA的中點(diǎn)C作FD∥OB交⊙O于D、F兩點(diǎn),且CD= ,以O(shè)為圓心,OC為半徑作 ,交OB于E點(diǎn).

(1)求⊙O的半徑OA的長(zhǎng);
(2)計(jì)算陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A2,3),點(diǎn)B﹣2,1),在x軸上存在點(diǎn)PA,B兩點(diǎn)的距離之和最小,則P點(diǎn)的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周老師為鍛煉身體一直堅(jiān)持步行上下班。已知學(xué)校到周老師家總路程為2000米,一天,周老師下班后,以45/分的速度從學(xué)校往家走,走到離學(xué)校900米時(shí),正好遇到一個(gè)朋友,停下又聊了20分鐘,之后以110/分的速度走回了家.周老師回家過(guò)程中,離家的路程S(米)與所用時(shí)間t(分)之間的關(guān)系如圖所示.

1)求a的值;

2b= ,c= .

3)求周老師從學(xué)校到家的平均速度。

查看答案和解析>>

同步練習(xí)冊(cè)答案