【題目】數(shù)學(xué)課上,老師提出如下問題:已知點(diǎn)A,B,C是不在同一直線上三點(diǎn),求作一條過點(diǎn)C的直線l,使得點(diǎn)A,B到直線l的距離相等.
小明的作法如下:
①連接AB;
②分別以A,B為圓心,以大于AB為半徑畫弧,兩弧交于M、N兩點(diǎn);
③作直線MN,交線段AB于點(diǎn)O;
④作直線CO,則CO就是所求作的直線l.
老師肯定了小明的作法,根據(jù)上面的作法回答下列問題:
(1)小明利用尺規(guī)作圖作出的直線MN是線段AB的 ;點(diǎn)O是線段AB的 ;
(2)要證明點(diǎn)A,點(diǎn)B到直線l的距離相等,需要在圖中畫出必要的線段,請?jiān)趫D中作出輔助線,并說明線段 的長是點(diǎn)A到直線l的距離,線段 的長是點(diǎn)B到直線l的距離;
(3)證明點(diǎn)A,B到直線l的距離相等.
【答案】(1)垂直平分線; 中點(diǎn);(2)作圖見解析,AE, BF ;(3)見解析
【解析】
(1)根據(jù)基本作圖可判斷直線MN是線段AB的垂直平分線,則點(diǎn)O是線段AB的中點(diǎn);
(2)利用基本作圖(過一點(diǎn)作已知直線的垂線),作點(diǎn)A作AE⊥l于點(diǎn)E,過點(diǎn)B作BF⊥l于點(diǎn)F;根據(jù)點(diǎn)到直線的距離可判斷線段AE 的長是點(diǎn)A到直線l的距離,線段BF 的長是點(diǎn)B到直線l的距離;
(3)證明△AEO≌△BFO即可得到AE=BF.
解:(1)直線MN是線段AB的垂直平分線;點(diǎn)O是線段AB的中點(diǎn);
(2)過點(diǎn)A作AE⊥l于點(diǎn)E,過點(diǎn)B作BF⊥l于點(diǎn)F;
線段AE 的長是點(diǎn)A到直線l的距離,
線段BF 的長是點(diǎn)B到直線l的距離;
(3)∵AE⊥l,BF⊥l,
∴∠AEO=∠BFO=90°
在△AOE和△BOF中,
,
∴△AEO≌△BFO,
∴AE=BF,即點(diǎn)A,B到直線l的距離相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△BAC為圓O內(nèi)接三角形,AB=AC,D為⊙O上一點(diǎn),連接CD、BD,BD與AC交于點(diǎn)E,且BC2=ACCE
①求證:∠CDB=∠CBD;
②若∠D=30°,且⊙O的半徑為3+,I為△BCD內(nèi)心,求OI的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級共有8個(gè)班,241名同學(xué),歷史老師為了了解新中考模式下該校八年級學(xué)生選修歷史學(xué)科的意向,請小紅,小亮,小軍三位同學(xué)分別進(jìn)行抽樣調(diào)查.三位同學(xué)調(diào)查結(jié)果反饋如下:
小紅、小亮和小軍三人中,你認(rèn)為哪位同學(xué)的調(diào)查結(jié)果較好地反映了該校八年級同學(xué)選修歷史的意向,請說出理由,并由此估計(jì)全年級有意向選修歷史的同學(xué)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P和直線m,給出如下定義:若存在一點(diǎn)P,使得點(diǎn)P到直線m的距離等于1,則稱P為直線m的平行點(diǎn).
(1)當(dāng)直線m的表達(dá)式為y=x時(shí),
①在點(diǎn),,中,直線m的平行點(diǎn)是______;
②⊙O的半徑為,點(diǎn)Q在⊙O上,若點(diǎn)Q為直線m的平行點(diǎn),求點(diǎn)Q的坐標(biāo).
(2)點(diǎn)A的坐標(biāo)為(n,0),⊙A半徑等于1,若⊙A上存在直線的平行點(diǎn),直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京地鐵票價(jià)計(jì)費(fèi)標(biāo)準(zhǔn)如表所示:
另外,使用市政交通一卡通,每個(gè)自然月每張卡片支出累計(jì)滿100元后,超出部分打8折;滿150元后,超出部分打5折;支出累計(jì)達(dá)400元后,不再打折.
小紅媽媽上班時(shí),需要乘坐地鐵15公里到達(dá)公司,每天上下班共乘坐兩次,如果每次乘坐地鐵都使用市政交通一卡通,那么每月第21次乘坐地鐵上下班時(shí),她刷卡支出的費(fèi)用是( )
A.2.5元B.3元C.4元D.5元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某商店在2016年至2018年期間銷售一種禮盒.2016年,該商店用2200元購進(jìn)了這種禮盒并且全部售完:2018年,這種禮盒每盒的進(jìn)價(jià)是2016年的一半,且該商店用2100元購進(jìn)的禮盒數(shù)比2016年的禮盒數(shù)多100盒.那么,2016年這種禮盒每盒的進(jìn)價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)E為正方形ABCD邊BC上一動點(diǎn),連接AE,并將線段AE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°得到線段EF.過點(diǎn)F作FG⊥BC交BC的延長線于點(diǎn)G.
(1)求證:△ABE≌△EGF;
(2)連接CF,延長FE交AB的延長線于點(diǎn)H.探究線段BH,BC,CF之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)連接AF交CD于M,若BH=1,CF=3.求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=(1-a)x2+8x+b的圖象的一部分如圖所示,拋物線的頂點(diǎn)在第一象限,且經(jīng)過點(diǎn)A(0,-7)和點(diǎn)B.
(1)求a的取值范圍;
(2)若OA=2OB,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線分別交軸、軸于點(diǎn)A、B,拋物線過A,B兩點(diǎn),點(diǎn)P是線段AB上一動點(diǎn),過點(diǎn)P作PC 軸于點(diǎn)C,交拋物線于點(diǎn)D.
(1)若拋物線的解析式為,設(shè)其頂點(diǎn)為M,其對稱軸交AB于點(diǎn)N.
①求點(diǎn)M、N的坐標(biāo);
②是否存在點(diǎn)P,使四邊形MNPD為菱形?并說明理由;
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線,使得以B、P、D為頂點(diǎn)的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com