【題目】五一期間,小明和小穎相約到樂山大佛景區(qū)參觀.小明乘私家車從成都出發(fā)1小時后,小穎乘坐高鐵從成都出發(fā),先到樂山高鐵站,然后轉(zhuǎn)乘出租車到樂山大佛景區(qū)(換車時間忽略不計),兩人恰好同時到達景區(qū).他們離開成都的距離y(千米)與時間t(小時)的關(guān)系如圖所示,請結(jié)合圖象解決下面問題.

1)高鐵的平均速度是每小時多少千米?

2)當小穎到達樂山高鐵站時,小明距離樂山大佛景區(qū)還有多少千米?

【答案】1)高鐵的平均速度是每小時240千米;(2)當小穎到達樂山高鐵站時,小明距離樂山大佛景區(qū)還有56千米

【解析】

1)利用圖象給出的數(shù)量關(guān)系及關(guān)鍵的數(shù)值,從圖象中可以得高鐵運行的時間和行駛的路程,可得高鐵的行駛速度;

2)設(shè)私家車的速度為x千米/時,根據(jù)題意列方程解答即可.

解:(1)觀察圖象可得,高鐵行駛的時間是1小時,行駛的路程是240千米.

所以240÷1=240km/h),

故高鐵的平均速度是每小時240千米.

2)設(shè)私家車的速度為x千米/時,根據(jù)題意得:

1.5x=240×(1.51)

解得x=80

∴當小穎到達樂山高鐵站時,小明距樂山大佛景區(qū)距離為:21680×2=56km).

答:當小穎到達樂山高鐵站時,小明距離樂山大佛景區(qū)還有56千米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,B、C兩點恰好在反比例函數(shù)y= (k>0)第一象限的圖象上,且BC= ,SABC= ,AB∥x軸,CD⊥x軸交x軸于點D,作D關(guān)于直線BC的對稱點D′.若四邊形ABD′C為平行四邊形,則k為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點P在AB的延長線上,且∠CAB=2∠BCP.

(1)求證:直線CP是⊙O的切線;
(2)若BC=2 ,sin∠BCP= ,求⊙O的半徑及△ACP的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y= 在同一坐標系內(nèi)的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某藍莓種植生產(chǎn)基地產(chǎn)銷兩旺,采摘的藍莓部分加工銷售部分直接銷售,且當天都能銷售完,直接銷售是40/,加工銷售是130/(不計損耗).已知基地雇傭20名工人,每名工人只能參與采摘和加工中的一項工作每人每天可以采摘70斤或加工35設(shè)安排x名工人采摘藍莓,剩下的工人加工藍莓

(1)若基地一天的總銷售收入為yyx的函數(shù)關(guān)系式;

(2)試求如何分配工人才能使一天的銷售收入最大?并求出最大值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B為切點,∠OAB=30度.

(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】林灣鄉(xiāng)修建一條灌溉水渠,如圖,水渠從A村沿北偏東65°方向到B村,從B村沿北偏西25°方向到C村水渠從C村沿什么方向修建,可以保持與AB的方向一致?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著中國傳統(tǒng)節(jié)日端午節(jié)的臨近,東方紅商場決定開展歡度端午,回饋顧客的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.

(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?

(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了慶祝校園藝術(shù)節(jié),準備購買一批盆花布置校園.已知1A種花和2B種花一共需13,2A種花和1B種花一共需11.

(1)1A種花和1B種花的售價各是多少元?

(2)學校準備購進這兩種盆花共100,并且A種盆花的數(shù)量不超過B種盆花數(shù)量的2,請求出A種盆花的數(shù)量最多是多少?

查看答案和解析>>

同步練習冊答案