【題目】OAB在第一象限中,OAAB,OAAB,O是坐標原點,且函數(shù)y正好過A,B兩點,BEx軸于E點,則OE2BE2的值為( 。

A. 3B. 2C. 3D. 4

【答案】D

【解析】

過點AAFy軸于點F,延長EBFA的延長線于點D.由題意可證四邊形DEOF是矩形,可得DEOF,DFOE,由題意可證AFO≌△BDA,可得AFDB, ADOF,設出A點坐標,表示出BEOE,即可求出所求式子的值.

如圖:過點AAFy軸于點F,延長EBFA的延長線于點D

AFOF,BEOE,OEOF

∴四邊形DEOF是矩形

∴∠D90°,OFDE,DFOE

設點Aa,),即AFa,OF

∵∠BAO90°,AFFO

∴∠BAD+FAO90°,∠FAO+FOA90°

∴∠DAB=∠AOFAOAB,∠AFO=∠ADB90°

∴△AFO≌△BDAAAS

ADOFDBAFa

BEDEDBa,OEDFAF+ADa+

OE2BE2=(a+2﹣(a24

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+6xy軸分別交于點A,B,雙曲線的解析式為

(1)求出線段AB的長

(2)在雙曲線第四象限的分支上存在一點C,使得CBAB,CB=AB,k的值;

(3)(1)(2)的條件下,連接AC,DBC的中點,DAC的垂線BF,ACB,交直線ABF,AD,若點P為射線AD上的一動點,連接PCPF,當點P在射線AD上運動時,PF-PC的值是否發(fā)生改變?若改變,請求出其范圍;若不變,請證明并求出定值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,拋物線yax2+bx+c經過點A(﹣20)、B4,0)、C0,3)三點.

1)試求拋物線的解析式;

2)點Py軸上的一個動點,連接PA,試求5PA+4PC的最小值;

3)如圖②,若直線l經過點T(﹣40),Q為直線l上的動點,當以A、B、Q為頂點所作的直角三角形有且僅有三個時,試求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知梯形ABCD中,ADBC,ABAC,E是邊BC上的點,且∠AED=∠CAD,DEAC于點F

1)求證:ABE∽△DAF;

2)當ACFCAEEC時,求證:ADBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某挖掘機的底座高AB=0.8米,動臂BC=1.2米,CD=1.5米,BCCD的固定夾角∠BCD=140°.初始位置如圖1,斗桿頂點D與鏟斗頂點E所在直線DE垂直地面AM于點E,測得∠CDE=70°(示意圖2).工作時如圖3,動臂BC會繞點B轉動,當點A,BC在同一直線時,斗桿頂點D升至最高點(示意圖4)

(1)求挖掘機在初始位置時動臂BCAB的夾角∠ABC的度數(shù).

(2)問斗桿頂點D的最高點比初始位置高了多少米(精確到0.1)?

(考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64sin70°≈0.94,cos70°≈0.34

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(30),B(0,-1),連接AB,B點作AB的垂線段,使BA=BC,連接AC.

(1)如圖1,求C點坐標;

(2)如圖2,P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形BPQ,連接CQ.求證:PA=CQ.

(3)(2)的條件下,C、P、Q三點共線,求此時P點坐標及∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘輪船航行到 B 處時,測得小島 A 在船的北偏東 60°的方向,輪船從 B 處繼續(xù)向正東方向航行 20 海里到達 C 處時,測得小島 A 在北船的北偏東 30°的方向.

(1)若小島 A 到這艘輪船航行路線 BC 的距離是 AD,求 AD 的長.

(2)已知在小島周圍 17 海里內有暗礁,若輪船不改變航向繼續(xù)向前行駛,試問輪船有無觸礁的危險?(≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是長方形ABCD的邊AB上的點,EFDEBC于點F

1)求證:△ADE∽△BEF

2)設HED上一點,以EH為直徑作O,DFO相切于點G,若DHOH3,求圖中陰影部分的面積(結果保留到小數(shù)點后面第一位,1.73,π3.14).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖①所示是一個長為2m,寬為2n的長方形,用剪刀均分成四個小長方形,然后按圖②的方式拼成一個大正方形.

1)圖②中的大正方形的邊長等于   ,圖②中的小正方形的邊長等于   ;

2)圖②中的大正方形的面積等于   ,圖②中的小正方形的面積等于   ;圖①中每個小長方形的面積是   ;

3)觀察圖②,你能寫出(m+n2,(mn2,mn這三個代數(shù)式間的等量關系嗎?   

查看答案和解析>>

同步練習冊答案