【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結論.
【答案】(1)證明見解析;(2)四邊形AFBD是矩形.理由見解析.
【解析】
試題分析:(1)先由AF∥BC,利用平行線的性質可證∠AFE=∠DCE,而E是AD中點,那么AE=DE,∠AEF=∠DEC,利用AAS可證△AEF≌△DEC,那么有AF=DC,又AF=BD,從而有BD=CD;
(2)四邊形AFBD是矩形.由于AF平行等于BD,易得四邊形AFBD是平行四邊形,又AB=AC,BD=CD,利用等腰三角形三線合一定理,可知AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.
試題分析:(1)∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中點,
∴AE=DE,
,
∴△AEF≌△DEC(AAS),
∴AF=DC,
∵AF=BD,
∴BD=CD;
(2)四邊形AFBD是矩形.
理由:
∵AB=AC,D是BC的中點,
∴AD⊥BC,
∴∠ADB=90°
∵AF=BD,
∵過A點作BC的平行線交CE的延長線于點F,即AF∥BC,
∴四邊形AFBD是平行四邊形,
又∵∠ADB=90°,
∴四邊形AFBD是矩形.
科目:初中數學 來源: 題型:
【題目】下列長度的3條線段,能首尾依次相接組成三角形的是 ------------------ ( 。
A. 1cm,2cm,4cm B. 8cm,6cm,4cm
C. 12cm,5cm,6cm D. 1cm,3cm,4cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下面一組按規(guī)律排列的數:1, 2,4, 8,16,……,第2002個數應是( )
A. 22002 B. 22002-1 C. 22001 D. 以上答案不對
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,O為矩形ABCD對角線的交點,DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結論:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正確結論有( 。﹤
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列事件是不可能事件的是( )
A. 買一張電影票,座位號是奇數 B. 從一個只裝有紅球的袋子里摸出白球
C. 三角形兩邊之和大于第三邊 D. 明天會下雨
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com