【題目】如圖,一次函數(shù)y1=﹣x﹣1的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)圖象的一個(gè)交點(diǎn)為M(﹣2,m).
(1)求反比例函數(shù)的解析式;(2)求點(diǎn)B到直線OM的距離.
【答案】(1)(2)
【解析】
解:(1)∵一次函數(shù)y1=﹣x﹣1過(guò)M(﹣2,m),∴m=1。∴M(﹣2,1)。
把M(﹣2,1)代入得:k=﹣2。
∴反比列函數(shù)為。
(2)設(shè)點(diǎn)B到直線OM的距離為h,過(guò)M點(diǎn)作MC⊥y軸,垂足為C。
∵一次函數(shù)y1=﹣x﹣1與y軸交于點(diǎn)B,
∴點(diǎn)B的坐標(biāo)是(0,﹣1)。
∴。
在Rt△OMC中,,
∵,∴。
∴點(diǎn)B到直線OM的距離為.
(1)根據(jù)一次函數(shù)解析式求出M點(diǎn)的坐標(biāo),再把M點(diǎn)的坐標(biāo)代入反比例函數(shù)解析式即可。
(2)設(shè)點(diǎn)B到直線OM的距離為h,過(guò)M點(diǎn)作MC⊥y軸,垂足為C,根據(jù)一次函數(shù)解析式表示出B點(diǎn)坐標(biāo),利用△OMB的面積=×BO×MC算出面積,利用勾股定理算出MO的長(zhǎng),再次利用三角形的面積公式可得OMh,根據(jù)前面算的三角形面積可算出h的值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二元一次方程,通過(guò)列舉將方程的解寫(xiě)成下列表格的形式:
-1 | 5 | 6 | |||
6 | 5 | 0 |
如果將二元一次方程的解所包含的未知數(shù)的值對(duì)應(yīng)直角坐標(biāo)系中一個(gè)點(diǎn)的橫坐標(biāo),未知數(shù)的值對(duì)應(yīng)這個(gè)點(diǎn)的縱坐標(biāo),這樣每一個(gè)二元一次方程的解,就可以對(duì)應(yīng)直角坐標(biāo)系中的一個(gè)點(diǎn),例如:方程的解的對(duì)應(yīng)點(diǎn)是.
(1)表格中的________,___________;
(2)通過(guò)以上確定對(duì)應(yīng)點(diǎn)坐標(biāo)的方法,將表格中給出的五個(gè)解依次轉(zhuǎn)化為對(duì)應(yīng)點(diǎn)的坐標(biāo),并在所給的直角坐標(biāo)系中畫(huà)出這五個(gè)點(diǎn);根據(jù)這些點(diǎn)猜想方程的解的對(duì)應(yīng)點(diǎn)所組成的圖形是_________,并寫(xiě)出它的兩個(gè)特征①__________,②_____________;
(3)若點(diǎn)好落在的解對(duì)應(yīng)的點(diǎn)組成的圖形上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了提高服務(wù)質(zhì)量,某賓館決定對(duì)甲、乙兩種套房進(jìn)行星級(jí)提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬(wàn)元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬(wàn)元,乙種套房費(fèi)用為700萬(wàn)元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬(wàn)元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬(wàn)元,但不超過(guò)2096萬(wàn)元,且所籌資金全部用于甲、乙種套房星級(jí)提升,市政府對(duì)兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?
(3)在(2)的條件下,根據(jù)市場(chǎng)調(diào)查,每套乙種套房的提升費(fèi)用不會(huì)改變,每套甲種套房提升費(fèi)用將會(huì)提高a萬(wàn)元(a>0),市政府如何確定方案才能使費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)邊防局接到情報(bào),近海處有一可疑船只正向公海方向行駛,邊防部迅速派出快艇追趕(如圖1) .圖2中分別表示兩船相對(duì)于海岸的距離 (海里)與追趕時(shí)間(分)之間的關(guān)系.根據(jù)圖象問(wèn)答問(wèn)題:
(1)①直線與直線中 表示到海岸的距離與追趕時(shí)間之間的關(guān)系;
②與比較 速度快;
③如果一直追下去,那么________ (填 “能”或“不能")追上;
④可疑船只速度是 海里/分,快艇的速度是 海里/分;
(2)與對(duì)應(yīng)的兩個(gè)一次函數(shù)表達(dá)式與中的實(shí)際意義各是什么?并直接寫(xiě)出兩個(gè)具體表達(dá)式.
(3)分鐘內(nèi)能否追上?為什么?
(4)當(dāng)逃離海岸海里的公海時(shí),將無(wú)法對(duì)其進(jìn)行檢查,照此速度,能否在逃入公海前將其攔截?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,,點(diǎn)為邊上一點(diǎn),連接BD,點(diǎn)為上一點(diǎn),連接,,過(guò)點(diǎn)作,垂足為,交于點(diǎn).
(1)求證:;
(2)如圖2,若,點(diǎn)為的中點(diǎn),求證:;
(3)在(2)的條件下,如圖3,若,求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是等邊三角形,點(diǎn)是的中點(diǎn),點(diǎn)在射線上,點(diǎn)在射線上,,
(1)如圖1,若點(diǎn)與點(diǎn)重合,求證:.
(2)如圖2,若點(diǎn)在線段上,點(diǎn)在線段上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科技小組進(jìn)行野外考察,途中遇到一片十幾米寬的泥地,他們沿著前進(jìn)路線鋪了若干塊木板,構(gòu)成一條臨時(shí)近道,木板對(duì)地面的壓強(qiáng)p(Pa)是木板面積S(m2)的反比例函數(shù),其圖象如圖所示.
(1)寫(xiě)出這一函數(shù)的關(guān)系式和自變量的取值范圍.
(2)當(dāng)木板面積為0.2m2時(shí),壓強(qiáng)是多少?
(3)如果要求壓強(qiáng)不超過(guò)6000Pa,那么木板的面積至少為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,兩點(diǎn)的坐標(biāo)分別是點(diǎn),點(diǎn),且滿足:.
(1)求的度數(shù);
(2)點(diǎn)是軸正半軸上點(diǎn)上方一點(diǎn)(不與點(diǎn)重合),以為腰作等腰,,過(guò)點(diǎn)作軸于點(diǎn).
①求證:;
②連接交軸于點(diǎn),若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,現(xiàn)有兩點(diǎn)、分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為1cm/s,點(diǎn)N的速度為2 cm/s.當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),、同時(shí)停止運(yùn)動(dòng).
(1)點(diǎn)、運(yùn)動(dòng)幾秒時(shí),、兩點(diǎn)重合?
(2)點(diǎn)、運(yùn)動(dòng)幾秒時(shí),可得到等邊三角形?
(3)當(dāng)點(diǎn)、在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰三角形AMN?如存在,請(qǐng)求出此時(shí)、運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com