【題目】如圖,正方形,點在上,將繞點順時針旋轉至,點,分別為點,旋轉后的對應點,連接,,,與交于點,與交于點.
(1)求證;
(2)直接寫出圖中已經存在的所有等腰直角三角形.
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2﹣4x+3.
(1)求該二次函數與x軸的交點坐標和頂點;
(2)在所給坐標系中畫出該二次函數的大致圖象,并寫出當y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0,其中正確結論的個數是
A.5個 B.4個 C.3個 D.2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數據算出電線桿AB的高嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機會.已知在搖獎機內裝有2個紅球和2個白球,除顏色外其它都相同,搖獎者必須從搖獎機內一次連續(xù)搖出兩個球,根據球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A的坐標為(5,0),點C的坐標為(0,4),四邊形ABCO為矩形,點P為線段BC上的一動點,若△POA為等腰三角形,且點P在雙曲線y=上,則k值可以是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,點O在邊AC上,⊙O與△ABC的邊AC,AB分別切于C、D兩點,與邊AC交于點E,弦與AB平行,與DO的延長線交于M點.
(1)求證:點M是CF的中點;
(2)若E是的中點,連結DF,DC,試判斷△DCF的形狀;
(3)在(2)的條件下,若BC=a,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】被譽為“中原第一高樓”的鄭州會展賓館(俗稱“玉米樓”)坐落在風景如畫的如意湖畔,是來鄭州觀光的游客留影的最佳景點.學完了三角函數知識后,劉明和王華決定用自己學到的知識測量“玉米樓”的高度.如圖,劉明在點C處測得樓頂B的仰角為45°,王華在高臺上的D處測得樓頂的仰角為40°.若高臺DE的高為5米,點D到點C的水平距離EC為47.4米,A,C,E三點共線,求“玉米樓”AB的高度.(參考數據:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結果保留整數)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據下列要求,解答相關問題:
(1)請補全以下求不等式﹣2x2﹣4x≥0的解集的過程
①構造函數,畫出圖象:
根據不等式特征構造二次函數y=﹣2x2﹣4x;拋物線的對稱軸x=﹣1,開口向下,頂點(﹣1,2)與x軸的交點是(0,0),(﹣2,0),用三點法畫出二次函數y=﹣2x2﹣4x的圖象如圖1所示;
②數形結合,求得界點:
當y=0時,求得方程﹣2x2﹣4x=0的解為 ;
③借助圖象,寫出解集:
由圖象可得不等式﹣2x2﹣4x≥0的解集為 .
(2)利用(1)中求不等式解集的方法步驟,求不等式x2﹣2x+1<4的解集.
①構造函數,畫出圖象;
②數形結合,求得界點;
③借助圖象,寫出解集.
(3)參照以上兩個求不等式解集的過程,借助一元二次方程的求根公式,直接寫出關于x的不等式ax2+bx+c>0(a>0)的解集.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com