【題目】2018杭州馬拉松競賽”的個人競賽項目共有三項:A.“馬拉松”,B.“半程馬拉松”,C.“迷你馬拉松”.小明和小剛參加了該賽事的志愿者服務(wù)工作,組委會隨機將志愿者分配到三個項目組.

1)小明被分配到“迷你馬拉松”項目組的概率為______

2)請用畫樹狀圖或列表的方法,求出小明和小剛被分配到同一項目組的概率.

【答案】1;(2)小明和小剛被分配到同一項目組的概率為

【解析】

1)根據(jù)簡單事件的概率公式計算即可得;

2)先畫出樹狀圖,再找出小明和小剛分配的所有可能的結(jié)果,然后找出小明和小剛被分配到同一項目組的結(jié)果,最后根據(jù)簡單事件的概率公式計算即可得.

1)小明被分配到項目組有3種可能

則小明被分配到迷你馬拉松項目組的概率為

故答案為:;

2)由題意,畫樹狀圖如下:

由圖可知,小明和小剛分配的所有可能的結(jié)果有9種,它們每一種出現(xiàn)的可能性都相等,其中,小明和小剛被分配到同一項目組的結(jié)果有3

則小明和小剛被分配到同一項目組的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】凈揚水凈化有限公司用160萬元,作為新產(chǎn)品的研發(fā)費用,成功研制出了一種市場急需的小型水凈化產(chǎn)品,已于當(dāng)年投入生產(chǎn)并進行銷售.已知生產(chǎn)這種小型水凈化產(chǎn)品的成本為4/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量(萬件)與銷售價格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設(shè)公司銷售這種水凈化產(chǎn)品的年利潤為z(萬元).(注:若上一年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)

1)請求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;

2)求出第一年這種水凈化產(chǎn)品的年利潤z(萬元)與x(元/件)之間的函數(shù)關(guān)系式,并求出第一年年利潤的最大值;

3)假設(shè)公司的這種水凈化產(chǎn)品第一年恰好按年利潤z(萬元)取得最大值時進行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種水凈化產(chǎn)品每件的銷售價格x(元)定在8元以上(),當(dāng)?shù)诙甑哪昀麧櫜坏陀?/span>103萬元時,請結(jié)合年利潤z(萬元)與銷售價格x(元/件)的函數(shù)示意圖,求銷售價格x(元/件)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將拋物線向右平移個單位,再向上平移個單位,得到拋物線,直線的一個交點記為,與的一個交點記為,點的橫坐標(biāo)是,點在第一象限內(nèi).

1)求點的坐標(biāo)及的表達式;

2)點是線段上的一個動點,過點軸的垂線,垂足為,在的右側(cè)作正方形

①當(dāng)點的橫坐標(biāo)為時,直線恰好經(jīng)過正方形的頂點,求此時的值;

②在點的運動過程中,若直線與正方形始終沒有公共點,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某客商準(zhǔn)備采購一批特色商品,經(jīng)調(diào)查,用16000元采購A型商品的件數(shù)是用7500元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價多10元.

1)求一件A,B型商品的進價分別為多少元?

2)若該客商購進A,B型商品共250件進行試銷,其中A型品的件數(shù)不大于B型商品的件數(shù),且不小于80件,已知A型商品的售價為240/件,B型商品的售價為220/件,且全部售出,設(shè)購進A型商品m件,求該客商銷售這批商品的利潤ym之間的函數(shù)關(guān)系式,并寫出m的取值范圍;

3)在(2)的條件下,客商決定在試銷活動中每售出一件A型商品,就從一件A型商品的利潤中捐獻慈善資金a元(0a80),若該客商售完所有商品并捐獻資金后獲得的最大收益是17100元,求的a值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,拋物線軸于點,交軸于點

1)如圖1,求拋物線的解析式;

2)如圖2,點為拋物線上一點,連接并延長交軸于點,若點的橫坐標(biāo)為4,求的面積;

3)如圖3,點為對稱軸右側(cè)第四象限拋物線上一點,連接并延長交軸于點,過點軸于點.連接,過點延長線于點,當(dāng)時,延長交拋物線于點,點在直線上,連接,交線段于點,將射線繞點逆時針旋轉(zhuǎn)45°,得到射線交線段于點,交直線于點,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),拋物線y=ax2+bx+3經(jīng)過A(-3,0),B(-1,0)兩點.

(1)求拋物線的解析式;

(2)設(shè)拋物線的頂點為M,直線y=-2x+9y軸交于點C,與直線OM交于點D.現(xiàn)將拋物線平移,保持頂點在直線OD.若平移的拋物線與射線CD(含端點C)只有一個公共點,求它的頂點橫坐標(biāo)的值或取值范圍;

(3)如圖(2),將拋物線平移,當(dāng)頂點至原點時,過Q(0,3)作不平行于x軸的直線交拋物線于E,F(xiàn)兩點.問在y軸的負半軸上是否存在點P,使△PEF的內(nèi)心在y軸上.若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:⊙O1與⊙O2相交于A、B兩點,且O2在⊙O1上.

1)如圖1,AD是⊙O2的直徑,連DB并延長交⊙O1于點C,求證:CO2AD

2)如圖2,若AD是⊙O2的非直徑的弦,直線DB交⊙O1于點C,則(1)中的結(jié)論是否成立,為什么?請加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,過點D作DE∥BC交AB于點E,DF∥AB交BC于點F.

(1)求證:四邊形BEDF為菱形;

(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=8cm,AD=6cm,按下列步驟進行裁剪和拼圖:

第一步:如圖①,在線段AD上任意取一點E,沿EBEC剪下一個三角形紙片EBC(余下部分不再使用);

第二步:如圖②,沿三角形EBC的中位線GH將紙片剪成兩部分,并在線段GH上任意取一點M,線段BC上任意取一點N,沿MN將梯形紙片GBCH剪成兩部分;

第三步:如圖③,將MN左側(cè)紙片繞G點按順時針旋轉(zhuǎn)180,使線段GBGE重合,將MN右側(cè)紙片繞H點按逆時針方向旋轉(zhuǎn)180,使線段HCHE重合,拼成一個與三角形紙片EBC面積相等的四邊形紙片(裁剪和拼圖過程均無縫且不重疊)則拼成的這個四邊形紙片的周長的最大值為___cm

查看答案和解析>>

同步練習(xí)冊答案