【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

【答案】(1)證明見解析;(2)四邊形ADCF是菱形,證明見解析.

【解析】

試題分析:(1)根據(jù)AAS證AFE≌△DBE,推出AF=BD,即可得出答案;

(2)得出四邊形ADCF是平行四邊形,根據(jù)直角三角形斜邊上中線性質(zhì)得出CD=AD,根據(jù)菱形的判定推出即可.

試題解析:(1)∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中點,AD是BC邊上的中線,

∴AE=DE,BD=CD,

在△AFE和△DBE中

∴△AFE≌△DBE(AAS),

∴AF=BD,

∴AF=DC.

(2)四邊形ADCF是菱形,

證明:AF∥BC,AF=DC,

∴四邊形ADCF是平行四邊形,

∵AC⊥AB,AD是斜邊BC的中線,

∴AD=BC=DC,

∴平行四邊形ADCF是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列單項式中,與2xy是同類項的是(  )

A. 2x2y2 B. 3y C. xy D. 4x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運算正確的是( 。

A. ﹣2x2y3xy2=﹣6x2y2 B. (﹣x﹣2y)(x+2y)=x2﹣4y2

C. 6x3y2÷2x2y=3xy D. (4x3y22=16x9y4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中,2a是同類項的是( )

A. 3a B. 2ab C. 3a2 D. a2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】判斷正誤(對于真命題畫“√”,對于假命題畫“×”)鄰補角的平分線互相垂直.( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是一個菱形綠地,其周長為40 m,ABC=120°,在其內(nèi)部有一個四邊形花壇EFGH,其四個頂點恰好在菱形ABCD各邊的中點,現(xiàn)在準(zhǔn)備在花壇中種植茉莉花,其單價為10元/m2,請問需投資金多少元?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,把△ABC向上平移3個單位長度,再向右平移2個單位長度,得到△A′B′C′

⑴寫出A′、B′、C′的坐標(biāo);

⑵求出△ABC的面積;

⑶點Py軸上,且△BCP與△ABC的面積相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017213日,寧波舟山港45萬噸原油碼頭首次掛靠全球最大油輪——“泰歐輪,其中45萬噸用科學(xué)記數(shù)法表示為(

A. 0.45×106 B. 4.5×105 C. 45×104 D. 4.5×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅準(zhǔn)備從一塊面積為25平方分米的正方形工料上裁剪出一塊18平方分米的長方形的工件。

1求正方形工料的邊長;

2若要求裁下來的長方形的長寬的比為32,問這塊正方形工料是否合格?(參考數(shù)據(jù): =1.414, =1.732, =2.236

查看答案和解析>>

同步練習(xí)冊答案