【題目】蕭山某藝術(shù)團組織一場義演,售出成人和學生票共1000張,籌得票款7760.

(1)若成人票9/張,學生票5/張,求售出成人票和學生票各多少張

(2)若(1)中的票價不變,售出8張,所得票款數(shù)能否為6750元?為什么?

【答案】(1)售出成人票為690張,學生票為310;(2)所得票款數(shù)不能為6750元.

【解析】

(1)設(shè)成人票售出x張,學生票售出(1000﹣x)張,根據(jù)“成人票和學生票的總錢數(shù)為7760元”列出方程,解方程即可求得結(jié)論;(2)設(shè)成人票售出y張,學生票售出(8-y)張,列出y的一元一次方程,求出y的值,若y是整數(shù),即可能,若是分數(shù),即不可能.

解:(1)設(shè)成人票售出x張,學生票售出(1000﹣x)張,

依題意得,9x+5(1000﹣x)=7760,

解得,x=690,

1000﹣690=310,

答:售出成人票為690張,學生票為310張.

(2)設(shè)成人票售出y張,學生票售出(8﹣y)張,

依題意得,9y+5(8﹣y)=6750,

解得,y=1677,

因為y是整數(shù),所以不可能.

答:所得票款數(shù)不能為6750元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0;②2a+b=0;③a+b+c>0;④4a﹣2b+c>0,其中正確的個數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2014次,點B的落點依次為B1,B2,B3,,則B2014的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=2,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經(jīng)過點A的直線y=﹣ x+b與拋物線的另一個交點為D.

(1)若點D的橫坐標為2,求拋物線的函數(shù)解析式;
(2)若在第三象限內(nèi)的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設(shè)點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發(fā),沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知甲、乙兩人均從400米的環(huán)形跑道的A處出發(fā),各自以每秒6米和每秒8米的速度在跑道上跑步.

(1)若兩人同時出發(fā),背向而行,則經(jīng)過   秒鐘兩人第一次相遇;若兩人同時出發(fā),同向而行,則經(jīng)過   秒鐘乙第一次追上甲.

(2)若兩人同向而行,乙在甲出發(fā)10秒鐘后去追甲,經(jīng)過多少時間乙第二次追上甲.

(3)若讓甲先跑10秒鐘后乙開始跑,在乙用時不超過100的情況下,乙跑多少秒鐘時,兩人相距40米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB兩地相距2400米,甲、乙兩人分別從A,B兩地同時出發(fā)相向而行,乙的速度是甲的2倍,已知乙到達A15分鐘后甲到達B地.

(1)求甲每分鐘走多少米?

(2)兩人出發(fā)多少分鐘后恰好相距480米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】七巧板是我們祖先的一項卓越創(chuàng)造,被譽為“東方魔板”,小明利用七巧板(如圖1所示)中各板塊的邊長之間的關(guān)系拼成一個凸六邊形(如圖2所示),則該凸六邊形的周長是cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若函數(shù) 是反比例函數(shù),且圖象在第一,三象限,那么m的值是( 。
A.±1
B.1
C.-1
D.2

查看答案和解析>>

同步練習冊答案