已知,四邊形ABCD和四邊形AEFG均為正方形,試判斷線段BE與DG的數(shù)量關系,并說明理由.

【答案】分析:BE與DG的數(shù)量關系是BE=DG,由四邊形ABCD和四邊形AEFG均為正方形可以得出∠BAD=∠EAG=90°,AB=AD,AE=AG.可以得出∠DAG=∠EAB,通過證明△AGD≌△AEB,就可以得出結論.
解答:答:BE與DG的數(shù)量關系是:BE=DG.
證明:∵四邊形ABCD和四邊形AEFG均為正方形,
∴∠BAD=∠EAG=90°,AB=AD,AE=AG.
∴∠BAD-∠DAE=∠EAG-∠DAE,
即∠DAG=∠EAB,
在△AGD和△AEB中,

∴△AGD≌△AEB,
∴BE=DG.
點評:本題考查了正方形的性質,全等三角形的判定與性質的運用.全等三角形的書寫要注意對應頂點寫在對應的位置上.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

我們給出如下定義:如果四邊形中一對頂點到另一對頂點所連對角線的距離相等,則把這對頂點叫做這個四邊形的一對等高點.例如:如圖1,平行四邊形ABCD中,可證點A、C到BD的距離相等,所以點A、C是平行四邊形ABCD的一對等高點,同理可知點B、D也是平行四邊形ABCD的一對等高點.
(1)如圖2,已知平行四邊形ABCD,請你在圖2中畫出一個只有一對等高點的四邊形ABCE(要求:畫出必要的輔助線);
(2)已知P是四邊形ABCD對角線BD上任意一點(不與B、D點重合),請分別探究圖3、圖4中S1,S2,S3,S4四者之間的等量關系(S1,S2,S3,S4分別表示△ABP,△CBP,△CDP,△ADP的面積):
①如圖3,當四邊形ABCD只有一對等高點A、C時,你得到的一個結論是
 
;
②如圖4,當四邊形ABCD沒有等高點時,你得到的一個結論是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知,四邊形ABCD是菱形,AC=6,BD=8,求AB的長和菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

34、如圖:在平行四邊形ABCD中,∠B=30°,AE⊥BC于點E,AF⊥DC的延長線于點F,已知平行四邊形ABCD的周長為40cm,且AE:AF=2:3.求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,AC與BD相交于點O,AB⊥AC,CD⊥BD.
(1)求證:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知平行四邊形ABCD,E是邊AB的中點,聯(lián)結AC、DE交于點O.記向量
AB
=
a
,
AD
=
b
,則向量
OE
=
1
6
a
-
1
3
b
1
6
a
-
1
3
b
(用向量
a
、
b
表示).

查看答案和解析>>

同步練習冊答案