【題目】閱讀材料:求值1+2+22+23+24+…+22014

解:設S=1+2+22+23+24+…+22014 ①,將等式兩邊同時乘以2

2S=2+22+23+24+…+22014+22015

將②﹣①得:S=220151,即S=1+2+22+23+24+…+22014=220151

請你仿照此法計算:

11+3+32+33+…+3100

21++++…+.

【答案】1;(22-

【解析】

1)先將等式的兩邊同時乘以3,再由②-①得結論;

2)將等式的兩邊同時乘以,再由②-①得結論;

解:(1)設S=1+3+32+33++3100①,

兩邊乘以3得:3S=3+32+33+34+35++3100+3101②,

-①,得3S-S=3101-l

S=

1+3+32+33+34++3100=;

2)設S=1+++,

兩邊乘以得:S=,

將下式減去上式得:-S=-1,

解得:S=2-,

1++++…+=2-

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在矩形紙片ABCD中,AB=6BC=8

1)將矩形紙片沿BD折疊,點A落在點E處(如圖①),設DEBC相交于點F,求BF的長;

2)將矩形紙片折疊,使點B與點D重合(如圖②),求折痕GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

1)(+17)+(-12);

210+(―)―6―(―0.25);

3)(48 ;

4)|-54|-5×(-221÷(-

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2014河南21題)某商店銷售10A型和20B型電腦的利潤為4000元,銷售20A型和10B型電腦的利潤為3500元.

1)求每臺A型電腦和B型電腦的銷售利潤;

2)該商店計劃一次購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍.設購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

①求y關于x的函數(shù)關系式;

②該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大?

3)實際進貨時,廠家對A型電腦出廠價下降元,且限定商店最多購進A型電腦70臺.若商店保持兩種電腦的售價不變,請你根據(jù)以上信息及(2)中條件,設計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,直線 y=﹣x+6 y 軸于點 A,與 x 軸交于點 D,直線 AB x 軸于點 B,AOB 沿直線 AB 折疊,點 O 恰好落在直線 AD 上的點 C 處.

1)求點 B 的坐標;

2)如圖 2,直線 AB 上的兩點 FG,DFG 是以 FG 為斜邊的等腰直角三角形,求點 G 的坐標;

3)如圖 3,點 P 是直線 AB 上一點,點 Q 是直線 AD 上一點,且 P、Q 均在第四象限,點 E x 軸上一點,若四邊形 PQDE 為菱形,求點 E 的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰ABCAB=BC,以AB為直徑的圓交AC于點D,過點D的⊙O的切線交BC于點E,若CD=5,CE=4,則⊙O的半徑是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點DE,過點DDF⊥AC,垂足為F,線段FD,AB的延長線相交于點G

1)求證:DF⊙O的切線;

2)若CF=1,DF=,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形,對角線交于點,點分別是的中點,連接,連接

1)證明:四邊形是平行四邊形

2)點是哪些線段的中點,寫出結論,并選擇一組給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)軸上兩點間的距離等于這兩個點所對應的數(shù)的差的絕對值.例:點AB在數(shù)軸上對應的數(shù)分別為a、b,則A、B兩點間的距離表示為AB|ab|.根據(jù)以上知識解題:

1)點A在數(shù)軸上表示3,點B在數(shù)軸上表示2,那么AB_______

2)在數(shù)軸上表示數(shù)a的點與﹣2的距離是3,那么a______

3)如果數(shù)軸上表示數(shù)a的點位于﹣42之間,那么|a+4|+|a2|______

4)對于任何有理數(shù)x,|x3|+|x6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.

查看答案和解析>>

同步練習冊答案