【題目】已知拋物線y=kx2+(k﹣2)x﹣2(其中k0).

(1)求該拋物線與x軸的交點及頂點的坐標(可以用含k的代數(shù)式表示);

(2)若記該拋物線頂點的坐標為P(m,n),直接寫出|n|的最小值;

3)將該拋物線先向右平移個單位長度,再向上平移個單位長度,隨著k的變化,平移后的拋物線的頂點都在某個新函數(shù)的圖象上,求新函數(shù)的解析式(不要求寫自變量的取值范圍).

【答案】1拋物線的頂點坐標是();(2)當k=2時,|n|的最小值是2;(3新函數(shù)的解析式為y=1

【解析】試題分析:(1)令y=0解方程kx2+k2x2=0即可得到拋物線與x軸的交點,根據(jù)拋物線的頂點坐標公式(﹣)代入進行計算即可求解

2)根據(jù)(1)的結果,然后利用絕對值的性質,再根據(jù)不等式的性質進行解答;

3)根據(jù)左加右減上加下減,寫出平移后的拋物線頂點坐標,然后消掉字母k即可得解.

試題解析:(1)當y=0,kx2+k2x2=0,即(kx2)(x+1=0,解得x1=,x2=1,∴拋物線與x軸的交點坐標是(0)與(﹣1,0),====,∴拋物線的頂點坐標是(,);

2)根據(jù)(1),|n|=||===++12+1=1+1=2,當且僅當=,k=2時取等號,∴當k=2,|n|的最小值是2;

3+=,+===k1設平移后的拋物線的頂點坐標為(x,y),消掉字母ky=1,∴新函數(shù)的解析式為y=1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】喝綠茶前需要燒水和泡茶兩個工序,即需要將電熱水壺中的水燒到100℃,然后停止燒水,等水溫降低到適合的溫度時再泡茶,燒水時水溫y)與時間xmin)成一次函數(shù)關系;停止加熱過了1分鐘后,水壺中水的溫度 y)與時間xmin)近似于反比例函數(shù)關系(如圖).已知水壺中水的初始溫度是20℃,降溫過程中水溫不低于20℃

1)分別求出圖中所對應的函數(shù)關系式,并且寫出自變量x的取值范圍;

2)從水壺中的水燒開(100℃)降到80℃就可以進行泡制綠茶,問從水燒開到泡茶需要等待多長時間?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀題:課本上有這樣一道例題:解方程:

解:去分母得:

6(x+15)=15-10(x-7)

6x+90=15-10x+70

16x=-5

x=-

請回答下列問題:

(1)得到①式的依據(jù)是________;

(2)得到②式的依據(jù)是________;

(3)得到③式的依據(jù)是________;

(4)得到④式的依據(jù)是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,EBC的中點,連接AE,過點EEF⊥AEDC于點F,連接AF.設=k,下列結論:(1△ABE∽△ECF,(2AE平分∠BAF,(3)當k=1時,△ABE∽△ADF,其中結論正確的是(  )

A1)(2)(3 B1)(3 C1)(2 D2)(3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某醫(yī)藥研究所研制了一種抗生素新藥,據(jù)臨床觀察:如果成人按規(guī)定的劑量注射這種抗生素,那么注射藥液后每毫升血液中的含藥量與時間之間的關系近似地滿足如圖所示的折線.

1)寫出注射藥液后,每毫升血液中含藥量與時間之間的函數(shù)解析式及自變量的取值范圍;

2)據(jù)臨床觀察:每毫升血液中含藥量不少于時,對控制病情是有效的,如果病人按規(guī)定的劑量注射該藥液后,那么這一次注射的藥液經(jīng)過多長時間后控制病情開始有效?這個有效時間是多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以直線上點為端點作射線,使,將直角的直角頂點放在點.

1)若直角的邊在射線上(圖①),求的度數(shù);

2)將直角繞點按逆時針方向轉動,使得所在射線平分(圖②),說明所在射線是的平分線;

3)將直角繞點按逆時針方向轉動到某個位置時,恰好使得(圖③),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】元旦期間,丹東新一百商城銷售兩種商品,種商品每件進價元,售價元;種商品每件售價元,利潤率為.

1)每件種商品利潤率為 種商品每件進價為 元;

2)由于熱銷,商城決定再購進上面的兩種商品共件(每件商品的進價不變),采購部預算共支出元,財務部算了一下,說:“如果你用這些錢買兩種商品,那么賬肯定算錯了!”請你用學過的方程知識解釋財務部為什么會這樣說?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每年的65日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設備,現(xiàn)有甲、乙兩種型號的設備可供選購,經(jīng)調查:購買3臺甲型設備比購買2臺乙型設備多花16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.

(1)求甲、乙兩種型號設備的價格;

(2)該公司決定購買節(jié)省能源的新設備的資金不超過110萬元,你認為該公司有哪幾種購買方案。

查看答案和解析>>

同步練習冊答案