【題目】如圖,已知拋物線>0)與軸交于A,B兩點(diǎn)(A點(diǎn)在B點(diǎn)的左邊),與軸交于點(diǎn)C。

(1)如圖1,若△ABC為直角三角形,求的值;

(2)如圖1,在(1)的條件下,點(diǎn)P在拋物線上,點(diǎn)Q在拋物線的對稱軸上,若以BC為邊,以點(diǎn)B,C,P,Q為頂點(diǎn)的四邊形是平行四邊形,求P點(diǎn)的坐標(biāo);

(3)如圖2,過點(diǎn)A作直線BC的平行線交拋物線于另一點(diǎn)D,交軸交于點(diǎn)E,若AE:ED=1:4,求的值.

【答案】(1);(2)點(diǎn)P的坐標(biāo)為 ;(3).

【解析】

(1)利用三角形相似可求AOOB,再由一元二次方程根與系數(shù)關(guān)系求AOOB構(gòu)造方程求n;

(2)求出B、C坐標(biāo),設(shè)出點(diǎn)Q坐標(biāo),利用平行四邊形對角線互相平分性質(zhì),分類討論點(diǎn)P坐標(biāo),分別代入拋物線解析式,求出Q點(diǎn)坐標(biāo);

(3)設(shè)出點(diǎn)D坐標(biāo)(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關(guān)系表示OB,得到點(diǎn)B坐標(biāo),進(jìn)而找到ba關(guān)系,代入拋物線求a、n即可.

(1)若ABC為直角三角形

∴△AOC∽△COB

OC2=AOOB

當(dāng)y=0時(shí),0=x2-x-n

由一元二次方程根與系數(shù)關(guān)系

-OAOB=OC2

n2==2n

解得n=0(舍去)或n=2

∴拋物線解析式為y=;

(2)由(1)當(dāng)=0時(shí)

解得x1=-1,x2=4

OA=1,OB=4

B(4,0),C(0,-2)

∵拋物線對稱軸為直線x=-

∴設(shè)點(diǎn)Q坐標(biāo)為(,b)

由平行四邊形性質(zhì)可知

當(dāng)BQ、CP為平行四邊形對角線時(shí),點(diǎn)P坐標(biāo)為(,b+2)

代入y=x2-x-2

解得b=,P點(diǎn)坐標(biāo)為(,

當(dāng)CQ、PB為為平行四邊形對角線時(shí),點(diǎn)P坐標(biāo)為(-,b-2)

代入y=x2-x-2

解得b=,P坐標(biāo)為(-

綜上點(diǎn)P坐標(biāo)為(,),(-,);

(3)設(shè)點(diǎn)D坐標(biāo)為(a,b)

AE:ED=1:4

OE=b,OA=a

ADAB

∴△AEO∽△BCO

OC=n

OB=

由一元二次方程根與系數(shù)關(guān)系得,

b=a2

將點(diǎn)A(-a,0),D(a,a2)代入y=x2-x-n

解得a=6a=0(舍去)

n= .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=ACDBC的中點(diǎn),以AC為腰向外作等腰直角ACE,∠EAC=90°,連接BE,交AD于點(diǎn)F,交AC于點(diǎn)G

1)若∠BAC=50°,求∠AEB的度數(shù);

2)求證:∠AEB=ACF;

3)試判斷線段EF、BFAC三者之間的等量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,B=90°,AB=5 cm,BC=7 cm,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B1 cm/s的速度移動,同時(shí)點(diǎn)Q從點(diǎn)B開始沿BC向點(diǎn)C2cm/s的速度移動.當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動,運(yùn)動時(shí)間為x(x>0).

(1)求幾秒后,PQ的長度等于5 cm.

(2)運(yùn)動過程中,△PQB的面積能否等于8 cm2?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+2x+c的圖象經(jīng)過點(diǎn)C(0,3),與x軸分別交于點(diǎn)A,點(diǎn)B(3,0).點(diǎn)P是直線BC上方的拋物線上一動點(diǎn).

(1)求二次函數(shù)y=ax2+2x+c的表達(dá)式;

(2)連接PO,PC,并把POC沿y軸翻折,得到四邊形POP′C.若四邊形POP′C為菱形,請求出此時(shí)點(diǎn)P的坐標(biāo);

(3)當(dāng)點(diǎn)P運(yùn)動到什么位置時(shí),四邊形ACPB的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ACPB的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,O是邊AC上一點(diǎn),以O為圓心,以OA為半徑的圓分別交AB、AC于點(diǎn)E、D,在BC的延長線上取點(diǎn)F,使得BF=EF.

(1)判斷直線EF與⊙O的位置關(guān)系,并說明理由;

(2)若∠A=30°,求證:DG=DA;

(3)若∠A=30°,且圖中陰影部分的面積等于2,求⊙O的半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長方形紙片沿折疊,使點(diǎn)與點(diǎn)重合,點(diǎn)落在點(diǎn)處,為折痕.若,,則四邊形 (陰影部分)的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,以線段為邊在第四象限內(nèi)作等邊三角形,點(diǎn)正半軸上一動點(diǎn) 連接,以線段為邊在第四象限內(nèi)作等邊三角形,連接并延長,交軸于點(diǎn)

(1)求證;

(2)在點(diǎn)的運(yùn)動過程中,的度數(shù)是否會變化?如果不變,請求出的度數(shù);如果變化,請說明理由

(3)當(dāng)點(diǎn)運(yùn)動到什么位置時(shí),以為頂點(diǎn)的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,點(diǎn)為直線上一動點(diǎn)(點(diǎn)不與點(diǎn)重合),以為腰作等腰直角,使,連接

1)觀察猜想

如圖1,當(dāng)點(diǎn)在線段上時(shí),

的位置關(guān)系為__________

之間的數(shù)量關(guān)系為___________(提示:可證

2)數(shù)學(xué)思考

如圖2,當(dāng)點(diǎn)在線段的延長線上時(shí),(1)中的①、②結(jié)論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結(jié)論再給予證明;

3)拓展延伸

如圖3,當(dāng)點(diǎn)在線段的延長線時(shí),將沿線段翻折,使點(diǎn)與點(diǎn)重合,連接,若,請直接寫出線段的長.(提示:做,做

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為創(chuàng)建“書香校園”,購置了一批圖書,已知購買科普類圖書花費(fèi)10000元,購買文學(xué)類圖書花費(fèi)9000元,其中科普類圖書平均每本的價(jià)格比文學(xué)類圖書平均每本的價(jià)格貴5元,且購買科普類圖書的數(shù)量與購買文學(xué)類圖書的數(shù)量相等.求科普類圖書平均每本的價(jià)格.

查看答案和解析>>

同步練習(xí)冊答案