【題目】如圖,邊長分別為2和4的兩個全等三角形,開始它們在左邊重疊,大△ABC固定不動,然后把小△A′B′C′自左向右平移,直至移到點B′到C重合時停止,設(shè)小三角形移動的距離為x,兩個三角形的重合部分的面積為y,則y關(guān)于x的函數(shù)圖象是( )

A.
B.
C.
D.

【答案】C
【解析】解:①x≤2時,兩個三角形重疊面積為小三角形的面積,
∴y= ×2× =
②當(dāng)2<x≤4時,重疊三角形的邊長為4﹣x,高為 (4﹣x),
y= (4﹣x)× (4﹣x)= x2﹣2 x+4 ,
③當(dāng)x=4時,兩個三角形沒有重疊的部分,即重疊面積為0,
故選:C.
根據(jù)題目提供的條件可以求出函數(shù)的解析式,根據(jù)解析式判斷函數(shù)的圖象的形狀.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某土產(chǎn)公司組織20輛汽車裝運甲、乙、丙三種土特產(chǎn)共120噸去外地銷售按計劃20輛車都要裝運,每輛汽車只能裝運同一種土特產(chǎn),且必須裝滿,根據(jù)下表提供的信息,解答以下問題

土特產(chǎn)種類

每輛汽車運載量(噸)

8

6

5

每噸土特產(chǎn)獲利(百元)

12

16

10

(1)設(shè)裝運甲種土特產(chǎn)的車輛數(shù)為x,裝運乙種土特產(chǎn)的車輛數(shù)為y,求y與x之間的函數(shù)關(guān)系式;

(2)如果裝運每種土特產(chǎn)的車輛都不少于3輛,那么車輛的安排方案有幾種?并寫出每種安排方案;

(3)若要使此次銷售獲利最大,應(yīng)采用(2)中哪種安排方案?并求出最大利潤的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點E,將ADE折疊使點D恰好落在BC邊上的點F,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正確的結(jié)論是 . (寫出正確命題的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ADE,且∠CAD10°,∠B∠D25°,∠EAB120°,試求∠DFB∠DGB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點A(﹣1,m)和點B(n,5).
(1)求該二次函數(shù)的關(guān)系式;
(2)在給定的平面直角坐標(biāo)系中,畫出這兩個函數(shù)的大致圖象;
(3)結(jié)合圖象直接寫出x2+bx+c>x+1時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB=a外有一點P,畫點P關(guān)于直線OA的對稱點P′,再作點P′關(guān)于直線OB的對稱點P″.

(1)試猜想∠POP″a的大小關(guān)系,并說出你的理由.

(2)當(dāng)P為∠AOB 內(nèi)一點或∠AOB邊上一點時,上述結(jié)論是否成立?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,BAD=C=90°,AB=AD,AEBC于E,若線段AE=5,則S四邊形ABCD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿DEEF翻折,頂點A,B均落在點O處,且EAEB重合于線段EO,若∠CDO+∠CFO=100°,則∠C的度數(shù)為( 。

A. 40° B. 41° C. 42° D. 43°

查看答案和解析>>

同步練習(xí)冊答案