精英家教網 > 初中數學 > 題目詳情

把一張矩形ABCD紙片按如圖方式折疊,使點A與點E重合,點C與點F重合(E、F兩點均在BD上),折痕分別為BH、DG.

(1)求證:△BHE≌△DGF;

(2)若AB=6cm,BC=8cm,求線段FG的長.

 

:解:(1)∵四邊形ABCD是矩形,

∴AB=CD,∠A=∠C=90°,∠ABD=∠BDC,

∵△BEH是△BAH翻折而成,

∴∠1=∠2,,∠A=∠HEB=90°,AB=BE,

∵△DGF是△DGC翻折而成,

∴∠3=∠4,∠C=∠DFG=90°,CD=DF,

∴△BEH與△DFG中,

∠HEB=∠DFG,BE=DF,∠2=∠3,

∴△BEH≌△DFG,

 

 

(2)∵四邊形ABCD是矩形,AB=6cm,BC=8cm,

∴AB=CD=6cm,AD=BC=8cm,

∴BD===10,

∵由(1)知,BD=CD,CG=FG,

∴BF=10﹣6=4cm,

設FG=x,則BG=8﹣x,

在Rt△BGF中,

BG2=BF2+FG2,即(8﹣x)2=42+x2,解得x=3,即FG=3cm.

解析::(1)先根據矩形的性質得出∠ABD=∠BDC,再由圖形折疊的性質得出∠1=∠2,∠3=∠4,∠A=∠HEB=90°,∠C=∠DFG=90°,進而可得出△BEH≌△DFG;

(2)先根據勾股定理得出BD的長,進而得出BF的長,由圖形翻折變換的性質得出CG=FG,設FG=x,則BG=8﹣x,再利用勾股定理即可求出x的值.

【關鍵

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

23、如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
(1)求證:△ABF≌△EDF;
(2)若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源:十堰 題型:解答題

如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
(1)求證:△ABF≌△EDF;
(2)若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BEAD交于點F.

⑴求證:ΔABF≌ΔEDF;

⑵若將折疊的圖形恢復原狀,點FBC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源:2012年湖北省襄陽市棗陽市吳店二中中考數學模擬試卷(解析版) 題型:解答題

如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
(1)求證:△ABF≌△EDF;
(2)若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源:2008年全國中考數學試題匯編《三角形》(16)(解析版) 題型:解答題

(2008•十堰)如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
(1)求證:△ABF≌△EDF;
(2)若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案