(本小題滿分12分)
小胖和小瘦去公園玩標準的蹺蹺板游戲,兩同學越玩越開心,小胖對小瘦說:“真可惜!
我只能將你最高翹到1米高,如果我倆各邊的蹺蹺板都再伸長相同的一段長度,那么我
就能翹到1米25,甚至更高!”
(1)你認為小胖的話對嗎?請你作圖分析說明;
(2)你能否找出將小瘦翹到1米25高的方法?試說明.
解:(1)小胖的話不對.·································· 2分
小胖說“真可惜!我現(xiàn)在只能將你最高翹到1米高”,情形如圖(1)所示,
是標準蹺蹺板支架的高度,是蹺蹺板一端能翹到的最高高度1米,是地面.
························································································· 4分
又此蹺蹺板是標準蹺蹺板,,
而米,得米.····················································· 5分
若將兩端同時都再伸長相同的長度,假設為米.
如圖(2)所示,
米,米········································· 6分
,即.
,同理可得.
,由米,得米.············ 7分
綜上所述,蹺蹺板兩邊同時都再伸長相同的一段長度,蹺蹺板能翹到的最高高度始終為支架高度的兩倍,所以不可能翹得更高.
(2)方案一:如圖(3)所示,
保持長度不變.將
延長一半至,即只將小瘦一邊伸長一半. 8分[來源:學。科。網(wǎng)]
使則.··································· 9分
由得························ 11分
米.··············································· 12分
方案二:如圖(4)所示,
只將支架升高0.125米.········································ 8分
又米.···························· 9分
.··················································································· 11分
米.·················································································· 12分
(注:其它方案正確,可參照上述方案評分。
【解析】略
科目:初中數(shù)學 來源:2011-2012學年九年級第二次模擬考試數(shù)學卷 題型:解答題
(本小題滿分12分)
如圖,反比例函數(shù)的圖象經(jīng)過A、B兩點,根據(jù)圖中信息解答下列問題:
1.(1)寫出A點的坐標;
2.(2)求反比例函數(shù)的解析式;
3.(3)若點A繞坐標原點O旋轉90°后得到點C,請寫出點C的坐標;并求出直線BC的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學卷 題型:解答題
(本小題滿分12分)
如圖(1),△ABC與△EFD為等腰直角三角形,AC與DE重合,AB=EF=9,∠BAC=∠DEF=90°,固定△ABC,將△EFD繞點A 順時針旋轉,當DF邊與AB邊重合時,旋轉中止。不考慮旋轉開始和結束時重合的情況,設DE、DF(或它們的延長線)分別交BC(或它的延長線)于G、H點,如圖(2)。
1.(1)問:始終與△AGC相似的三角形有 及 ;
2.(2)設CG=x,BH=y(tǒng),求y關于x的函數(shù)關系式(只要求根據(jù)2的情況說明理由);
3.(3)問:當x為何值時,△AGH是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年河北省衡水市五校九年級第三次聯(lián)考數(shù)學卷 題型:解答題
(本小題滿分12分)某班同學到野外活動,為測量一池塘兩端A、B的距離,設計了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個可以直接到達A、B的點C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測出DE的距離即為AB的長。(II)如圖(2),先過B點作AB的垂線BF,再在BF上取C、D兩點,使BC=CD,接著過點D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離。閱讀后回答下列問題:
1.(1)方案(I)是否可行?為什么?
2.(2)方案(II)是否切實可行?為什么?
3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是 ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
4.(4)方案(II)中,若使BC=n·CD,能否測得(或求出)AB的長?理由是 ,若ED=m,則AB= 。
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年江蘇GSJY八年級第二次學情調研考試數(shù)學卷 題型:解答題
(本小題滿分12分)
1. (1)觀察發(fā)現(xiàn)
如(a)圖,若點A,B在直線同側,在直線上找一點P,使AP+BP的值最。
做法如下:作點B關于直線的對稱點,連接,與直線的交點就是所求的點P
再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最小.
做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為 . (2分)
2.(2)實踐運用
如圖,菱形ABCD的兩條對角線分別長6和8,點P是對角線AC上的一個動點,點M、N分別是邊AB、BC的中點,求PM+PN的最小值。(5分)
3.(3)拓展延伸
如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法. (5分)
查看答案和解析>>
科目:初中數(shù)學 來源:2014屆湖北省孝感市七年級下學期期中考試數(shù)學卷 題型:解答題
.(本小題滿分12分)
如圖,AD為△ABC的中線,BE為△ABD的中線。
(1)∠ABE=15°,∠BAD=40°,求∠BED的度數(shù);
(2)在△BED中作BD邊上的高;
(3)若△ABC的面積為40,BD=5,則△BDE 中BD邊上的高為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com