【題目】如圖,在菱形中,,點(diǎn)分別是線段上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且,相交于點(diǎn).給出如下幾個(gè)結(jié)論:

平分;

③若,則

其中正確的結(jié)論是_____________(填寫(xiě)所有正確結(jié)論的序號(hào))

【答案】①②④

【解析】

根據(jù)菱形的性質(zhì)得到ABAD,推出△ABD為等邊三角形,得到∠A=∠BDF60,根據(jù)全等三角形的判定得到△AED≌△DFB;過(guò)點(diǎn)CCMGBM,CNGDN(如圖1),根據(jù)全等三角形的性質(zhì)得到CNCM,根據(jù)角平分線的定義得到CG平分∠BGD;過(guò)點(diǎn)FFPAEDEP點(diǎn)(如圖2),根據(jù)平行線分線段成比例定理得到BG6GF,再得到;推出B、CD、G四點(diǎn)共圓,根據(jù)圓周角定理得到∠BGC=∠BDC60,∠DGC=∠DBC60,求得∠BGC=∠DGC60,過(guò)點(diǎn)CCMGBM,CNGDN(如圖1),推出S四邊形BCDGS四邊形CMGN,于是得到S四邊形CMGN2SCMG2××CG×CGCG2

①∵ABCD為菱形,

ABAD

ABBD,

∴△ABD為等邊三角形,

∴∠A=∠BDF60,

又∵AEDFADBD,

∴△AED≌△DFBSAS),故本選項(xiàng)正確;

②過(guò)點(diǎn)CCMGBM,CNGDN(如圖1),

則△CBM≌△CDNAAS),

CNCM,

CGCG,

RtCNGRtCMGHL),

∴∠DGC=∠BGC

CG平分∠BGD;故本選項(xiàng)正確;

③過(guò)點(diǎn)FFPAEDEP點(diǎn)(如圖2),

AF2FD

FPAEDFDA13,

AEDF,ABAD,

BE2AE,

FPBEFP2AE16,

FPAE,

PFBE,

FGBGFPBE16,

BG6GF,

故本選項(xiàng)錯(cuò)誤;

④∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF60=∠BCD,

即∠BGD+∠BCD180,

∴點(diǎn)B、CD、G四點(diǎn)共圓,

∴∠BGC=∠BDC60,∠DGC=∠DBC60,

∴∠BGC=∠DGC60,

過(guò)點(diǎn)CCMGBM,CNGDN(如圖1),

則△CBM≌△CDNAAS),

S四邊形BCDGS四邊形CMGN,

S四邊形CMGN2SCMG

∵∠CGM60,∴∠GCM60

GMCGCM=CG,

S四邊形CMGN2SCMG2×××CG×CGCG2,故本選項(xiàng)正確;

故答案為:①②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,ABa,點(diǎn)EF在對(duì)角線BD上,且∠ECF=∠ABD,將△BCE繞點(diǎn)C旋轉(zhuǎn)一定角度后,得到△DCG,連接FG.則下列結(jié)論:

①∠FCG=∠CDG;

②△CEF的面積等于;

FC平分∠BFG;

BE2+DF2EF2;

其中正確的結(jié)論是_____.(填寫(xiě)所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=a-4axx軸交于A,B兩點(diǎn)(AB的左側(cè))

(1)求點(diǎn)A,B的坐標(biāo);

(2)已知點(diǎn)C(2,1),P(1,-a),點(diǎn)Q在直線PC上,且Q點(diǎn)的橫坐標(biāo)為4

①求Q點(diǎn)的縱坐標(biāo)(用含a的式子表示);

②若拋物線與線段PQ恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1、圖2分別是8×8的網(wǎng)格,網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)均為1,線段AB的端點(diǎn)在小正方形的頂點(diǎn)上,請(qǐng)?jiān)趫D1、圖2中各畫(huà)一個(gè)圖形,分別滿(mǎn)足以下要求:

1)在圖1中畫(huà)一個(gè)以線段AB為一邊的正方形,并求出此正方形的面積;(所畫(huà)正方形各頂點(diǎn)必須在小正方形的頂點(diǎn)上)

2)在圖2中畫(huà)一個(gè)以線段AB為一邊的等腰三角形,所畫(huà)等腰三角形各頂點(diǎn)必須在小正方形的頂點(diǎn)上,且所畫(huà)等腰三角形的面積為12

1 2 備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)在拋物線的圖象上,且則線段長(zhǎng)的最大值與最小值的差為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)中,拋物線過(guò)點(diǎn),點(diǎn)是直線上方拋物線上的一動(dòng)點(diǎn),軸,交直線于點(diǎn),連接,交直線于點(diǎn)

在如下坐標(biāo)系作出該拋物線簡(jiǎn)圖,并求拋物線的函數(shù)表達(dá)式;

當(dāng)時(shí),求點(diǎn)的坐標(biāo);

求線段的最大值:

當(dāng)線段最大時(shí),若點(diǎn)在直線上且,直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在初中階段的函數(shù)學(xué)習(xí)中我們經(jīng)歷了確定函數(shù)的表達(dá),利用函數(shù)圖象研究其性質(zhì)﹣﹣運(yùn)用函數(shù)解決問(wèn)題的學(xué)習(xí)過(guò)程,在畫(huà)函數(shù)圖象時(shí),我們通過(guò)描點(diǎn)或平移的方法畫(huà)出了所學(xué)的函數(shù)圖象.已知函數(shù)y2b的定義域?yàn)?/span>x≥3,且當(dāng)x0時(shí)y22由此,請(qǐng)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y2b的圖象與性質(zhì)進(jìn)行如下探究:

1)函數(shù)的解析式為:   

2)在給定的平面直角坐標(biāo)系xOy中,畫(huà)出該函數(shù)的圖象并寫(xiě)出該函數(shù)的一條性質(zhì):   ;

3)結(jié)合你所畫(huà)的函數(shù)圖象與yx+1的圖象,直接寫(xiě)出不等式2b≤x+1的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題發(fā)現(xiàn):

(1)如圖1,在RtABC中,∠A90°,ABkAC(k1),DAB上一點(diǎn),DEBC,則BD,EC的數(shù)量關(guān)系為   

類(lèi)比探究

(2)如圖2,將△AED繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為a(0°<a90°),連接CE,BD,請(qǐng)問(wèn)(1)BD,EC的數(shù)量關(guān)系還成立嗎?說(shuō)明理由

拓展延伸:

(3)如圖3,在(2)的條件下,將△AED繞點(diǎn)A繼續(xù)旋轉(zhuǎn),旋轉(zhuǎn)角為a(a90°).直線BD,CE交于F點(diǎn),若AC1,AB,則當(dāng)∠ACE15°時(shí),BFCF的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+mx軸于點(diǎn)Aa,0)和Bb,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)結(jié)論:

①點(diǎn)C的坐標(biāo)為(0,m);

②當(dāng)m0時(shí),ABD是等腰直角三角形;

③若a=﹣1,則b4

④拋物線上有兩點(diǎn)Px1,y1)和Qx2,y2),若x11x2,且x1+x22,則y1y2

其中結(jié)論正確的序號(hào)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案