判斷題

在兩個圓中,有兩條弦相等,那么它們所對的圓心角相等.

(  )

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、關(guān)于圖形變化的探討:
(1)①例題1.如圖1,AB是⊙O的直徑,直線l與⊙O有一個公共點C,過A、B分別作l的垂線,垂足為E、F,則EC=CF.
②上題中,當(dāng)直線l向上平行移動時,與⊙O有了兩個交點C1、C2,其它條件不變,如圖2,經(jīng)過推證,我們會得到與原題相應(yīng)的結(jié)論:EC1=C2F.
③把直線1繼續(xù)向上平行移動,使弦C1C2與AB交于點P(P不與A,B重合).在其它條件不變的情況下,請你在圖3的圓中將變化后的圖形畫出來,標(biāo)好對應(yīng)的字母,并寫出與①②相應(yīng)的結(jié)論等式.判斷你寫的結(jié)論是否成立,若不成立,說明理由,若成立,給以證明.結(jié)論
EC1=C2F
.證明結(jié)論成立或說明不成立的理由
(2)①例題2.如圖4,BC是⊙O的直徑.直線1是過C點的切線.N是⊙O上一點,直線BN交1于點M.過N點的切線交1于點P,則PM2=PC2
②把例題2中的直線1向上平行移動,使之與⊙O相交,且與直線BN交于B、N兩點之間.其它條件仍然不變,請你利用圖5的圓把變化后的圖形畫出來,標(biāo)好相應(yīng)的字母,并寫出與①相應(yīng)的結(jié)論等積式,判斷你寫的結(jié)論是否成立,若不成立,說明理由,若成立,給以證明.結(jié)論
PM2=PC1•PC2
.證明結(jié)論成立或說明不成立的理由:
(3)總結(jié):請你通過(1)、(2)的事實,用簡練的語言,總結(jié)出某些幾何圖形的一個變化規(guī)律
在某些幾何圖形中,平行移動某條直線,有些幾何關(guān)系保持不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分8分)
如圖,已知在⊙O中,AB=4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.

(1)求圖中陰影部分的面積;

 

 
(2)若用陰影扇形OBD圍成一個圓錐側(cè)面,請求出這個圓錐的底面圓的半徑.

(3) 試判斷⊙O中其余部分能否給(2)中的圓錐做兩個底面。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(福建泉州卷)數(shù)學(xué) 題型:解答題

(本小題滿分8分)
如圖,已知在⊙O中,AB=4,AC是⊙O的直徑,AC⊥BD于F,∠A=30°.

(1)求圖中陰影部分的面積;

 

 
(2)若用陰影扇形OBD圍成一個圓錐側(cè)面,請求出這個圓錐的底面圓的半徑.

(3) 試判斷⊙O中其余部分能否給(2)中的圓錐做兩個底面。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省泰興市黃橋區(qū)九年級中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題

定義:只有一組對角是直角的四邊形叫做損矩形,連結(jié)它的兩個非直角頂點的線段叫做這個損矩形的直徑.
【小題1】如圖1,損矩形ABCD,∠ABC=∠ADC=90°,則該損矩形的直徑是線段        .
【小題2】在線段AC上確定一點P,使損矩形的四個頂點都在以P為圓心的同一圓上(即損矩形的四個頂點在同一個圓上),請作出這個圓,并說明你的理由. 友情提醒:“尺規(guī)作圖”不要求寫作法,但要保留作圖痕跡.
【小題3】如圖2,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,D為菱形ACEF的中心,連結(jié)BD,當(dāng)BD平分∠ABC時,判斷四邊形ACEF為何種特殊的四邊形?請說明理由. 若此時AB=3,BD=,求BC的長.
                                    

查看答案和解析>>

同步練習(xí)冊答案