【題目】已知:如圖,在等腰直角三角形中,的中點,且,垂足為點,過點的延長線于點,聯(lián)結(jié).

1)求證:;

2)連接,試判斷的形狀,并說明理由.

【答案】1)見解析;(2是等腰三角形,理由見解析.

【解析】

1)由證明△DBF=等腰直角三角形,再證明,得,從而證明;

2)證明,可得,再由(1)知,從而證明,即可說明△ACF的性質(zhì).

1)證明:,

,

,

∠FEB=90°,

∠BFE=45°,

△DBF=等腰直角三角形,

DB=BF,

的中點,

DC=BD,

DC=FB,

在△ACD△CBF

,

;

2)連接

由(1)知△DBF等腰直角三角形,

,

DE=FE,

在△ADE△AFE

,

,

由(1)知,

,

,

是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=3,連接DE

1DE的長為   

2)動點P從點B出發(fā),以每秒1個單位的速度沿BCCDDA向終點A運動,設(shè)點P運動的時間為t秒,求當(dāng)t為何值時,△ABP和△DCE全等?

3)若動點P從點B出發(fā),以每秒1個單位的速度僅沿著BE向終點E運動,連接DP.設(shè)點P運動的時間為t秒,是否存在t,使△PDE為等腰三角形?若存在,請直接寫出t的值;否則,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為 1 的正方形組成的網(wǎng)格中,△ ABC的頂點均在格點上,A(3,2), B(4, 3), C(1, 1)

(1)畫出△ABC關(guān)于y軸對稱的圖形△ A′B′C′

(2)寫出A′B′、C′的坐標(直接寫出答案) A′ ;B′ ;C′ ;

(3)寫出△ A′B′C′的面積為 .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=2,AC=AD,請增加一個條件,使ABC≌△AED,你添加的條件是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點 (-3,0),(2,-5).

(1)試確定此二次函數(shù)的解析式;

(2)請你判斷點P(-2,3)是否在這個二次函數(shù)的圖象上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,B=30°DBC上一點,且∠DAB=45°

(1) 求∠DAC的度數(shù).

(2) 求證:ACD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,完成下列推理過程:

如圖所示,點E外部,點DBC邊上,DEACF,若,

求證:

證明:∵(已知),

________________),

________________),

又∵

________________________),

,

(已證)

(已知)

(已證)

________.

________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,ACB=90°,ABC=60°,BC=2cm,DBC的中點,若動點E1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設(shè)E點的運動時間為t秒(0≤t6),連接DE,當(dāng)BDE是直角三角形時,t的值為

A、2 B2.53.5 C、3.54.5 D、23.54.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】合肥地鐵一號線的開通運行給合肥市民出行方式帶來了一些變化,小朱和小張準備利用課余時間,以問卷的分式對合肥市民的出行方式進行調(diào)查,如圖是合肥地鐵一號線圖(部分),小朱和小張分別從塘西河公園站(用A表示)、金斗公園站(用B表示)、云谷路站(用C表示)、萬達城站(用D表示)這四站中,隨機選取一站作為調(diào)查的站點.

(1)在這四站中,小朱選取問卷調(diào)查的站點是萬達城站的概率是多少?

(2)求小朱選取問卷調(diào)查的站點與小張選取問卷調(diào)查的站點相鄰的概率.

查看答案和解析>>

同步練習(xí)冊答案