【題目】如圖,矩形中,,,點是邊上一點,連接,把沿折疊,使點落在點處.當為直角三角形時,則的長為________.
【答案】或
【解析】
當△CB′E為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,先利用勾股定理計算出AC=10,根據折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=6,可計算出CB′=4,設BE=x,則EB′=x,CE=8-x,然后在Rt△CEB′中運用勾股定理可計算出x.再在Rt△ABE中,利用勾股定理可得AE的長
②當點B′落在AD邊上時,如答圖2所示.此時ABEB′為正方形.可得AB=BE,在Rt△ABE中,利用勾股定理可得AE的長.
解:當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如答圖1所示.
連結AC,在Rt△ABC中,AB=6,BC=8,
∴AC=10,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△CEB′為直角三角形時,得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,
∴EB=EB′,AB=AB′=6,
∴CB′=10-6=4;
設BE=,則EB′=,CE=
在Rt△CEB′中,由勾股定理可得:,
解得:
在Rt△ABE中,利用勾股定理可得:
②當點B′落在AD邊上時,如答圖2所示.
此時ABEB′為正方形,
∴BE=AB=6,
∴在Rt△ABE中,利用勾股定理可得:
綜上所述,的長為或
故答案為:或
科目:初中數學 來源: 題型:
【題目】(1)如圖1,已知CE⊥AB,BF⊥AC,垂足分別為E、F,CE與BF相交于點D,且AD平分∠BAC.求證:CE=BF.
(2)如圖2,AD是△ABC的角平分線,AE=AC,EF∥BC交AC于F點,求證:EC平分∠DEF.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某地區(qū)機動機擁有量對道路通行的影響,學校九年級社會實踐小組對2010年~2017年機動車擁有量、車輛經過人民路路口和學校門口的堵車次數進行調查統(tǒng)計,并繪制成下列統(tǒng)計圖:
根據統(tǒng)計圖,回答下列問題:
(1)寫出2016年機動車的擁有量,分別計算2010年~2017年在人民路路口和學校門口堵車次數的平均數.
(2)根據統(tǒng)計數據,結合生活實際,對機動車擁有量與人民路路口和學校門口堵車次數,說說你的看法.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點平面直角坐標系的原點,三角形中,,頂點的坐標分別為,且.
(1)求三角形的面積;
(2)動點從點出發(fā)沿射線方向以每秒個單位長度的速度運動,設點的運動時間為t秒.連接,請用含t的式子表示三角形的面積;
(3)在(2)的條件下,當三角形的面積為時,直線與軸相交于點,求點的坐標
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某劇院的觀眾席的座位為扇形,且按下列分式設置:
排數(x) | 1 | 2 | 3 | 4 | … |
座位數(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的規(guī)律,當x每增加1時,y如何變化?
(2)寫出座位數y與排數x之間的關系式;
(3)按照上表所示的規(guī)律,某一排可能有90個座位嗎?說說你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,CD⊥AB于點D,點E在CD上,下列四個條件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,將其中兩個作為條件,不能判定△ADC≌△EDB的是
A.①②B.①④C.②③D.②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,身高1.6米的小明從距路燈的底部(點O)20米的點A沿AO方向行走14米到點C處,小明在A處,頭頂B在路燈投影下形成的影子在M處.
(1)已知燈桿垂直于路面,試標出路燈P的位置和小明在C處,頭頂D在路燈投影下形成的影子N的位置.
(2)若路燈(點P)距地面8米,小明從A到C時,身影的長度是變長了還是變短了?變長或變短了多少米?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如右上圖,在正方形ABCD中AB=3,,以B為圓心,半徑為1畫⊙B,點P在⊙B上移動,連接AP,并將AP繞點A逆時針方向旋轉 90°至AP′,連接BP′,在點P移動過程中,BP′長的取值范圍是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com