【題目】越來(lái)越多的人在用微信付款、轉(zhuǎn)賬,把微信賬戶里的錢轉(zhuǎn)到銀行卡叫做提現(xiàn)。
自2016年3月l日起,每個(gè)微信賬戶終身享有1000元的免費(fèi)提現(xiàn)額度,當(dāng)累計(jì)提現(xiàn)金額超過(guò)1000元時(shí),累計(jì)提現(xiàn)金額超出1000元的部分需支付0.1%的手續(xù)費(fèi),以后每次提現(xiàn)支付的手續(xù)費(fèi)為提現(xiàn)金額的0.1%.
(1)小明在今天第1次進(jìn)行了提現(xiàn),金額為l600元,他需支付手續(xù)費(fèi)_________元;
(2)小亮自2016年3月1日至今,用自己的微信賬戶共提現(xiàn)3次,3次提現(xiàn)金額和手續(xù)費(fèi)分別如下:
第1次 | 第2次 | 第3次 | |
提現(xiàn)金額(元) | A | b | |
手續(xù)費(fèi)(元) | 0 | 0.4 | 3.4 |
問(wèn):小明3次提現(xiàn)金額各是多少元?
(3)單筆手續(xù)費(fèi)小于0.1元的,按照0.1元收。刺岈F(xiàn)不足100元,按照100元收取手續(xù)費(fèi)).小紅至今共提現(xiàn)兩次,每次提現(xiàn)金額都是整數(shù),共支付手續(xù)費(fèi)2.4元,第一次提現(xiàn)900元。求小紅第二次提現(xiàn)金額的范圍.
【答案】(1)0.6;(2)小明第一次提現(xiàn)金額600元,第二次提現(xiàn)800元,第三次提現(xiàn)3400元 (3)元
【解析】
(1)根據(jù)應(yīng)付手續(xù)費(fèi)=(提現(xiàn)金額-1000)×0.1%,即可求出結(jié)論;
(2)根據(jù)支付的手續(xù)費(fèi)及第三次提現(xiàn)支付的手續(xù)費(fèi),即可得出關(guān)于a,b的二元一次方程組,解之即可求出a,b的值,將其代入3a+2b中即可求出結(jié)論;
(3)根據(jù)小紅共支付手續(xù)費(fèi)2.4元可知第一次和第二次提現(xiàn)超出1000元的部分大于2300元,小于或等于2400元,據(jù)此列不等式組即可求出結(jié)論.
(1)(1600-1000)×0.1%=0.6(元);
(2)根據(jù)題意,得
解得
∴
答:小明第一次提現(xiàn)金額600元,第二次提現(xiàn)800元,第三次提現(xiàn)3400元 ;
(3)設(shè)小紅第二次提現(xiàn)金額x元
元
解得:
答:小紅第二次提現(xiàn)金額范圍為元.
故答案為:(1)0.6;(2)小明第一次提現(xiàn)金額600元,第二次提現(xiàn)800元,第三次提現(xiàn)3400元 (3)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對(duì)角線BD向點(diǎn)D勻速運(yùn)動(dòng),速度為4cm/s,過(guò)點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線PD上,點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),速度為3cm/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點(diǎn)P與點(diǎn)O同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為t(單 位:s)(0<t<)。
(1)如圖1,連接DQ平分∠BDC時(shí),t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請(qǐng)你繼續(xù)進(jìn)行探究,并解答下列問(wèn)題:
①證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)O始終在QM所在直線的左側(cè);
②如圖3,在運(yùn)動(dòng)過(guò)程中,當(dāng)QM與⊙O相切時(shí),求t的值;并判斷此時(shí)PM與⊙O是否也相切?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七(1)班學(xué)生為了解某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,已知該小區(qū)用水量不超過(guò)的家庭占被調(diào)查家庭總數(shù)的百分比為12%,請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
級(jí)別 | ||||||
月均用水量 | ||||||
頻數(shù)(戶) | 6 | 12 | 10 | 4 | 2 |
(1)本次調(diào)查采用的方式是 (填“普查”或“抽樣調(diào)查”),樣本容量是 ;
(2)補(bǔ)全頻率分布直方圖;
(3)若將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計(jì)圖,則月均用水量“”的圓心角度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD為正方形,AB=2,點(diǎn)E為對(duì)角線AC上一動(dòng)點(diǎn),連接DE,過(guò)點(diǎn)E作EF⊥DE,交射線BC于點(diǎn)F,以DE,EF為鄰邊作矩形DEFG,連接CG.
(1)求證:矩形DEFG是正方形;
(2)探究:CE+CG的值是否為定值?若是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由;
(3)設(shè)AE=x,四邊形DEFG的面積為S,求出S與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解決中小學(xué)大班額問(wèn)題,某縣今年將改擴(kuò)建部分中小學(xué),根據(jù)預(yù)算,改擴(kuò)建3所中學(xué)和2所小學(xué)共需資金6200萬(wàn)元,改擴(kuò)建1所中學(xué)和3所小學(xué)共需資金4400萬(wàn)元
(1)改擴(kuò)建1所中學(xué)和1所小學(xué)所需資金分別是多少萬(wàn)元?
(2)該縣計(jì)劃改擴(kuò)建中小學(xué)共10所,改擴(kuò)建資金由國(guó)家財(cái)政和地方財(cái)政共同承擔(dān).若國(guó)家財(cái)政撥付資金不超過(guò)8400萬(wàn)元;地方財(cái)政投入資金不少于4000萬(wàn)元,其中地方財(cái)政投入到中小學(xué)的改擴(kuò)建資金分別為每所500萬(wàn)元和300萬(wàn)元,請(qǐng)問(wèn)共有哪幾種改擴(kuò)建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(6,n)。線段OA=5,E為x軸上一點(diǎn),且.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)自變量x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲口袋中放有3個(gè)紅球和5個(gè)白球,乙口袋中放有7個(gè)紅球和9個(gè)白球,所有球除顏色外都相同.充分?jǐn)噭騼蓚(gè)口袋,分別從兩個(gè)口袋中任意摸出一個(gè)球,設(shè)從甲中摸出紅球的概率是(紅),從乙中摸出紅球的概率是(紅).
(1)求(紅)與(紅)的值,并比較它們的大小.
(2)將甲、乙兩個(gè)口袋的球都倒入丙口袋,充分?jǐn)噭蚝螅O(shè)從丙中任意摸出一球是紅球的概率為(紅).小明認(rèn)為:(紅)(紅)(紅).他的想法正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=x2﹣2x﹣3與x軸交于A、B兩點(diǎn)(A在B的左邊),與y軸交于點(diǎn)C.
(1)求出點(diǎn)A、B、C的坐標(biāo).
(2)求S△ABC
(3)在拋物線上(除點(diǎn)C外),是否存在點(diǎn)N,使得S△NAB=S△ABC , 若存在,求出點(diǎn)N的坐標(biāo),若不 存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,且滿足.
(1)求、兩點(diǎn)的坐標(biāo);
(2)點(diǎn)在線段上,、滿足,點(diǎn)在軸負(fù)半軸上,連交軸的負(fù)半軸于點(diǎn),且,求點(diǎn)的坐標(biāo);
(3)平移直線,交軸正半軸于,交軸于,為直線上第三象限內(nèi)的點(diǎn),過(guò)作軸于,若,且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com