【題目】如圖,已知等邊的邊長為8是中線上一點,以為一邊在下方作等邊,連接并延長至點上一點,且,則的長為_________

【答案】6

【解析】

CG⊥MNG,證△ACE≌△BCF,求出∠CBF=∠CAE=30°,則可以得出,在Rt△CMG中,由勾股定理求出MG,即可得到的長.

解:如圖示:作CGMNG,


∵△ABC△CEF是等邊三角形,
∴AC=BC,CE=CF∠ACB=∠ECF=60°,
∴∠ACB-∠BCE=∠ECF-∠BCE,
∠ACE=∠BCF
△ACE△BCF

∴△ACE≌△BCFSAS),

又∵AD是三角形△ABC的中線
∴∠CBF=CAE=30°
,

RtCMG中,

MN=2MG=6,
故答案為:6

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線的解析式為,點的坐標分別為(1,0),(02),直線與直線相交于點

(1)求直線的解析式;

(2)在第一象限的直線上,連接,且,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平行四邊形各角的平分線分別相交于點

求證:四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是邊長為2的等邊三角形,點是直線上的一個動點,連接,將線段繞點順時針旋轉(zhuǎn)得到線段,連接在點運動過程中,線段的最小值為____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,反比例函數(shù)y=的圖象經(jīng)過點(﹣1,2),點A是該圖象第一象限分支上的動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊作等腰直角三角形ABC,頂點C在第四象限,ACx軸交于點D,當時,則點C的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蔬菜基地種植了娃娃菜和油菜兩種蔬菜共畝,設種植娃娃菜畝,總收益為萬元,有關(guān)數(shù)據(jù)見下表:

成本(單位:萬元/畝)

銷售額(單位:萬元/畝)

娃娃菜

2.4

3

油菜

2

2.5

1)求關(guān)于的函數(shù)關(guān)系式(收益 = 銷售額 成本);

2)若計劃投入的總成本不超過萬元,要使獲得的總收益最大,基地應種植娃娃菜和油菜各多少畝?

3)已知娃娃菜每畝地需要化肥kg,油菜每畝地需要化肥kg,根據(jù)(2)中的種植畝數(shù),基地計劃運送所需全部化肥,為了提高效率,實際每次運送化肥的總量是原計劃的倍,結(jié)果運送完全部化肥的次數(shù)比原計劃少次,求基地原計劃每次運送多少化肥.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:矩形,點的延長線上,連接,,且,的平分線于點

1)如圖1,求的大;

2)如圖2,過點的延長線于點,求證:

3)如圖3,在(2)的條件下,于點,點的中點,連接于點,點上,且,連接,且.延長于點,連接,若的周長與的周長的差為2,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DE分別是不等邊ABC(AB,BC,AC互不相等)的邊AB,AC的中點.點OABC所在平面上的動點,連接OBOC,點G,F分別是OBOC的中點,順次連接點D,G,F,E.

(1)如圖,當點OABC的內(nèi)部時,求證:四邊形DGFE是平行四邊形;

(2)若四邊形DGFE是菱形,則OABC應滿足怎樣的數(shù)量關(guān)系?(直接寫出答案,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某貯水塔在工作期間,每小時的進水量和出水量都是固定不變的.從凌晨4點到早8點只進水不出水,8點到12點既進水又出水,14點到次日凌晨只出水不進水.下圖是某日水塔中貯水量y(立方米)與x(時)的函數(shù)圖象.

1)求每小時的進水量;

2)當8x12時,求yx之間的函數(shù)關(guān)系式;

3)從該日凌晨4點到次日凌晨,當水塔中的貯水量不小于28立方米時,直接寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案