【題目】某商場經(jīng)營某種品牌的玩具,購進的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具,
(1)設(shè)該種品牌玩具的銷售單價為x元,請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元;
(2)在(1)問條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?
(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于45元,且商場要完成不少于480件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?
【答案】
(1)解:y=600﹣10(x﹣40)=﹣10x+1000,
w=(﹣10x+1000)(x﹣30)=﹣10x2+1300x﹣30000
(2)解:根據(jù)題意,得:﹣10x2+1300x﹣30000=10000,
解得:x1=50,x2=80,
答:玩具銷售單價為50元或80元時,可獲得10000元銷售利潤
(3)解:根據(jù)題意得 ,
解得:45≤x≤52,
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,
∵a=﹣10<0,對稱軸x=65,
∴當45≤x≤52時,y隨x增大而增大.
∴當x=52時,W最大值=10560(元),
答:商場銷售該品牌玩具獲得的最大利潤是10560元
【解析】(1)根據(jù)銷售量與銷售單價之間的變化關(guān)系就可以直接求出y與x之間的關(guān)系式;根據(jù)銷售問題的利潤=售價﹣進價就可以表示出w與x之間的關(guān)系;(2)根據(jù)題意得方程求得x1=50,x2=80,于是得到結(jié)論;(3)根據(jù)銷售單價不低于45元且商場要完成不少于480件的銷售任務(wù)求得45≤x≤52,根據(jù)二次函數(shù)的性質(zhì)得到當45≤x≤52時,y隨x增大而增大,于是得到結(jié)論.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:
信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程:
已知:直線l和l外一點P.(如圖1)
求作:直線l的垂線,使它經(jīng)過點P.
作法:如圖2
(1)在直線l上任取兩點A,B;
(2)分別以點A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點Q;
(3)作直線PQ.
所以直線PQ就是所求的垂線.
請回答:該作圖的依據(jù)是_________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一個條件,某學(xué)習(xí)小組在討論這個條件時給出了如下幾種方案: ①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有( )
A. 1種 B. 2種 C. 3種 D. 4種
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):
(1)①若∠DCE=45°,則∠ACB的度數(shù)為 ;
②若∠ACB=140°,求∠DCE的度數(shù);
(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.
(3)當∠ACE<180°且點E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,點D在邊OA上,將圖中的△COD繞點O按每秒10°的速度沿順時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,在第 秒時,邊CD恰好與邊AB平行.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線y=x+2與x軸交于點A,與y軸交于點C,與反比例函數(shù)y= 在第一象限內(nèi)的圖象交于點B(1,3),連接BO,下面三個結(jié)論:①S△AOB=1.5,;②點(x1 , y1)和點(x2 , y2)在反比例函數(shù)的圖象上,若x1>x2 , 則y1<y2;③不等式x+2< 的解集是0<x<1.其中正確的有( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“趙爽炫圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學(xué)的驕傲,如圖所示的“趙爽炫圖”是由四個全等直角三角形和一個小正方形拼成的一個大正方形,設(shè)直角三角形較長直角邊長為,較短直角邊長為,若(a+b)2=21,大正方形的面積為13,則小正方形的邊長為( )
A. B. 2 C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com