【題目】如圖,以的直角邊為直徑作交斜邊于點,連接并延長交的延長線于點,作交于點,連接.
(1)求證:
(2)求證:是的切線;
(3)若的半徑為,,求的值.
科目:初中數(shù)學 來源: 題型:
【題目】某企業(yè)對一種設備進行升級改造,并在一定時間內進行生產營銷,設改造設備的臺數(shù)為x,現(xiàn)有甲、乙兩種改造方案.
甲方案:升級后每臺設備的生產營銷利潤為4000元,但改造支出費用由材料費和施工費以及其他費用三部分組成,其中材料費與x的平方成正比,施工費與x成正比,其他費用為2500元,(利潤=生產營銷利潤-改造支出費用).設甲方案的利潤為(元),經過統(tǒng)計,得到如下數(shù)據(jù):
改造設備臺數(shù)x(臺) | 20 | 40 |
利潤(元) | 9500 | 5500 |
乙方案:升級后每臺設備的生產營銷利潤為3500元,但改造支出費用與x之間滿足函數(shù)關系式:(a為常數(shù),),且在使用過程中一共還需支出維護費用,(利潤=生產營銷利潤-改造支出費用-維護費用).設乙方案的利潤為(元).
(1)分別求出,與x的函數(shù)關系式;
(2)若,的最大值相等,求a的值;
(3)如果要將30臺設備升級改造,請你幫助決策,該企業(yè)應選哪種方案,所獲得的利潤較大.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,對于兩個點,和圖形,如果在圖形上存在點,(,可以重合)使得,那么稱點與點是圖形的一對平衡點.
(1)如圖1,已知點,;
①設點與線段上一點的距離為,則的最小值是 ,最大值是 ;
②在,,這三個點中,與點是線段的一對平衡點的是 ;
(2)如圖2,已知的半徑為1,點的坐標為
(3)如圖3,已知點,以點為圓心,長為半徑畫弧交的正半軸于點.點(其中)是坐標平面內一個動點,且,是以點為圓心,半徑為2的圓,若上的任意兩個點都是的一對平衡點,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠ABC=45°,AB=4,BC=9,直線MN平分平行四邊形ABCD的面積,分別交邊AD、BC于點M、N,若△BMN是以MN為腰的等腰三角形,則BN=_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明為今年將要參加中考的好友小李制作了一個(如圖)正方體禮品盒,六面上各有一字,連起來就是“預祝中考成功”,其中“預”的對面是“中”,“成”的對面是“功”,則它的平面展開圖可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著社會的發(fā)展,私家車變得越來越普及,使用節(jié)能低油耗汽車,對環(huán)保有著非常積極的意義,某市有關部門對本市的某一型號的若干輛汽車,進行了一項油耗抽樣實驗:即在同一條件下,被抽樣的該型號汽車,在油耗的情況下,所行駛的路程(單位:)進行統(tǒng)計分析,結果如圖所示:
(注:記為,為,為,為,為)
請依據(jù)統(tǒng)計結果回答以下問題:
(1)試求進行該試驗的車輛數(shù);
(2)請補全頻數(shù)分布直方圖;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=10,BC=15,點D,E,P分別是邊AC,AB;BC上的點,且AD=4,AE=4EB.若 是等腰三角形,則CP的長是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自我省深化課程改革以來,某校開設了:A.利用影長求物體高度,B.制作視力表,C.設計遮陽棚,D.制作中心對稱圖形,四類數(shù)學實踐活動課.規(guī)定每名學生必選且只能選修一類實踐活動課,學校對學生選修實踐活動課的情況進行抽樣調查,將調查結果繪制成如下兩幅不完整的統(tǒng)計圖.
根據(jù)圖中信息解決下列問題:
(1)本次共調查名學生,扇形統(tǒng)計圖中B所對應的扇形的圓心角為度;
(2)補全條形統(tǒng)計圖;
(3)選修D類數(shù)學實踐活動的學生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機抽取2人做校報設計,請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com