一個(gè)小服裝廠(chǎng)生產(chǎn)某種風(fēng)衣,售價(jià)P(元/件)與月銷(xiāo)售量x(件)之間的關(guān)系為P=160-2x,生產(chǎn)x件的成本R=500+30x元.
(1)該廠(chǎng)的月產(chǎn)量為多大時(shí),獲得的月利潤(rùn)為1300元?
(2)當(dāng)月產(chǎn)量為多少時(shí),可獲得最大月利潤(rùn)?最大利潤(rùn)是多少元?
(1)設(shè)該廠(chǎng)的月獲利為y,依題意得,
y=(160-2x)x-(500+30x)=-2x2+130x-500,
由y=1300知-2x2+130x-500=1300,
∴x2-65x+900=0,
∴(x-20)(x-45)=0,
解得x1=20,x2=45;
∴當(dāng)月產(chǎn)量為20或45件時(shí),月獲利為1300元.

(2)由(1)知y=-2x2+130x-500=-2(x-
65
2
2+1612.5,
∵x為正整數(shù),∴x=32或33時(shí),y取得最大值為1612元,
∴當(dāng)月產(chǎn)量為32件或33件時(shí),可獲得最大利潤(rùn)1612元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=-
m-4
8
x2+
2m-7
3
x+m2-6m+8
經(jīng)過(guò)原點(diǎn)O,點(diǎn)B(-2,n)在這條拋物線(xiàn)上.
(1)求拋物線(xiàn)的解析式;
(2)將直線(xiàn)y=-2x沿y軸向下平移b個(gè)單位后得到直線(xiàn)l,若直線(xiàn)l經(jīng)過(guò)B點(diǎn),求n、b的值;
(3)在(2)的條件下,設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,直線(xiàn)l與y軸交于點(diǎn)D,且與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn)E.若P是拋物線(xiàn)上一點(diǎn),且PB=PE,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直線(xiàn)y=
3
3
x+b
經(jīng)過(guò)點(diǎn)B(-
3
,2),且與x軸交于點(diǎn)A.將拋物線(xiàn)y=
1
3
x2
沿x軸作左右平移,記平移后的拋物線(xiàn)為C,其頂點(diǎn)為P.
(1)求∠BAO的度數(shù);
(2)直線(xiàn)AB交拋物線(xiàn)y=
1
3
x2
的右側(cè)于點(diǎn)D,問(wèn)點(diǎn)B是AD中點(diǎn)嗎?試說(shuō)明理由;
(3)拋物線(xiàn)C與y軸交于點(diǎn)E,與直線(xiàn)AB交于兩點(diǎn),其中一個(gè)交點(diǎn)為F.當(dāng)線(xiàn)段EFx軸時(shí),求平移后的拋物線(xiàn)C對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖.已知二次函數(shù)y=-x2+bx+3的圖象與x軸的一個(gè)交點(diǎn)為A(4,0),與y軸交于點(diǎn)B.
(1)求此二次函數(shù)關(guān)系式和點(diǎn)B的坐標(biāo);
(2)在x軸的正半軸上是否存在點(diǎn)P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,有長(zhǎng)為48米的籬笆,一面利用墻(墻的最大可用長(zhǎng)度25米),圍成中間隔有一道籬笆的長(zhǎng)方形花圃ABCD.
(1)當(dāng)AB的長(zhǎng)是多少米時(shí),圍成長(zhǎng)方形花圃ABCD的面積為180m2?
(2)能?chē)煽偯娣e為240m2的長(zhǎng)方形花圃嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等邊三角形的邊長(zhǎng)為x(cm),則此三角形的面積S(cm2)關(guān)于x的函數(shù)關(guān)系式是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

安慶迎江區(qū)農(nóng)民張大伯為了致富奔小康,大力發(fā)展家庭養(yǎng)殖業(yè),他準(zhǔn)備用40米長(zhǎng)的木欄圍一個(gè)矩形的養(yǎng)圈,為了節(jié)約材料,同時(shí)要使矩形面積最大,他利用了自己家房屋一面長(zhǎng)24米的墻,設(shè)計(jì)了如圖一個(gè)矩形的養(yǎng)圈.
(1)請(qǐng)你求出張大伯設(shè)計(jì)的矩形養(yǎng)圈的面積.
(2)請(qǐng)你判斷他的設(shè)計(jì)方案是否使矩形養(yǎng)圈的面積最大?如果不是最大,應(yīng)怎樣設(shè)計(jì)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某旅游勝地欲開(kāi)發(fā)一座景觀山.從山的側(cè)面進(jìn)行勘測(cè),迎面山坡線(xiàn)ABC由同一平面內(nèi)的兩段拋物線(xiàn)組成,其中AB所在的拋物線(xiàn)以A為頂點(diǎn)、開(kāi)口向下,BC所在的拋物線(xiàn)以C為頂點(diǎn)、開(kāi)口向上.以過(guò)山腳(點(diǎn)C)的水平線(xiàn)為x軸、過(guò)山頂(點(diǎn)A)的鉛垂線(xiàn)為y軸建立平面直角坐標(biāo)系如圖(單位:百米).已知AB所在拋物線(xiàn)的解析式為y=-
1
4
x2+8,BC所在拋物線(xiàn)的解析式為y=
1
4
(x-8)2,且已知B(m,4).
(1)設(shè)P(x,y)是山坡線(xiàn)AB上任意一點(diǎn),用y表示x,并求點(diǎn)B的坐標(biāo);
(2)從山頂開(kāi)始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階.這種臺(tái)階每級(jí)的高度為20厘米,長(zhǎng)度因坡度的大小而定,但不得小于20厘米,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(見(jiàn)圖).
①分別求出前三級(jí)臺(tái)階的長(zhǎng)度(精確到厘米);
②這種臺(tái)階不能一直鋪到山腳,為什么?
(3)在山坡上的700米高度(點(diǎn)D)處恰好有一小塊平地,可以用來(lái)建造索道站.索道的起點(diǎn)選擇在山腳水平線(xiàn)上的點(diǎn)E處,OE=1600(米).假設(shè)索道DE可近似地看成一段以E為頂點(diǎn)、開(kāi)口向上的拋物線(xiàn),解析式為y=
1
28
(x-16)2試求索道的最大懸空高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠ACB=90°AC=BC=6cm,正方形DEFG的邊長(zhǎng)為2cm,其一邊EF在BC所在的直線(xiàn)L上,開(kāi)始時(shí)點(diǎn)F與點(diǎn)C重合,讓正方形DEFG沿直線(xiàn)L向右以每秒1cm的速度作勻速運(yùn)動(dòng),最后點(diǎn)E與點(diǎn)B重合.
(1)請(qǐng)直接寫(xiě)出該正方形運(yùn)動(dòng)6秒時(shí)與△ABC重疊部分面積的大;
(2)設(shè)運(yùn)動(dòng)時(shí)間為x(秒),運(yùn)動(dòng)過(guò)程中正方形DEFG與△ABC重疊部分的面積為y(cm2).
①在該正方形運(yùn)動(dòng)6秒后至運(yùn)動(dòng)停止前這段時(shí)間內(nèi),求y與x之間的函數(shù)關(guān)系式;
②在該正方形整個(gè)運(yùn)動(dòng)過(guò)程中,求當(dāng)x為何值時(shí),y=
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案