【題目】如圖,⊙O的半徑OA⊥OC,點D在上,且=2,OA=4.
(1)∠COD= °;
(2)求弦AD的長;
(3)P是半徑OC上一動點,連結(jié)AP、PD,請求出AP+PD的最小值,并說明理由.
(解答上面各題時,請按題意,自行補足圖形)
【答案】(1)30;(2)弦AD長為4;(3)AP+PD的最小值為,理由見解析.
【解析】(本小題滿分12分)
解:(1)30;……………………………………………………………………1分
(2)連結(jié)OD、AD(如圖2).
∵OA⊥OC,∴∠AOC=90°.∵=2,
設(shè)所對的圓心角∠COD=,………………………………………………1分
則∠AOD=,…………………………………………………………………2分
由∠AOD+∠DOC=90°,
得+=90°,∴=30°,=60°,…………………………3分
即∠AOD=60°,又∵OA=OD,∴△AOD為等邊三角形,…………4分
∴AD=OA=4;…………………………………………………………………5分
(3)過點D作DE⊥OC,交⊙O于點E,……………………………………1分
連結(jié)AE,交OC于點P(如圖3),………………………………………………2分
則此時,AP+PD的值最。
∵根據(jù)圓的對稱性,點E是點D關(guān)于OC的對稱點,
OC是DE的垂直平分線,即PD=PE.………………………………………3分
∴AP+PD=AP+PE=AE,
若在OC上另取一點F,連結(jié)AF、FD及EF,
在△AFE中,AF+FE>AE,
即AF+FE>AP+PD,
∴可知AP+PD最。捶
∵∠AED=∠AOD=30°,
又∵OA⊥OC,DE⊥OC,∴OA∥DE,
∴∠OAE=∠AED=30°.
延長AO交⊙O于點B,連結(jié)BE,∵AB為直徑,
∴△ABE為直角三角形.由=cos∠BAE,……………………………5分
得AE=AB·cos30°=2×4×=,……………………………6分
即AP+PD=,
[也可利用勾股定理求得AE]
科目:初中數(shù)學 來源: 題型:
【題目】已知兩個正數(shù)a,b,可按規(guī)則c=ab+a+b擴充為一個新數(shù)c,在a,b,c三個數(shù)中取兩個較大的數(shù),按上述規(guī)則擴充得到一個新數(shù),依次下去,將每擴充一次得到一個新數(shù)稱為一次操作。
(1)若a=1,b=3,按上述規(guī)則操作3次,擴充所得的數(shù)是__________;
(2)若p>q>0,經(jīng)過3次操作后擴充所得的數(shù)為(m,n為正整數(shù)),則m,n的值分別為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個兩位數(shù)是a,在它的左邊加上一個數(shù)字b變成一個三位數(shù),則這個三位數(shù)用代數(shù)式表示為( 。
A. 10a+100b B. ba C. 100ba D. 100b+a
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D為BC邊上的點,∠CAD=∠CDA,E為AB邊的中點.
(1)尺規(guī)作圖:作∠C的平分線CF,交AD于點F(保留作圖痕跡,不寫作法);
(2)連結(jié)EF,EF與BC是什么位置關(guān)系?為什么?
(3)若四邊形BDFE的面積為9,求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解放中學為了了解學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛程度,隨機抽取了部分學生進行調(diào)查(每人限選1項),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中所給的信息解答下列問題.
(1)喜愛動畫的學生人數(shù)和所占比例分別是多少?
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校共有學生1000人,依據(jù)以上圖表估計該校喜歡體育的人數(shù)約為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com