如圖,在等腰△ABC中,AB=AC,點D在BC上,且AD=AE.
(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度數(shù)?
(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度數(shù)?
(3)猜想∠EDC與∠BAD的數(shù)量關系?(不必證明)

(1)解:∵∠BAC=90°,AB=AC,
∴∠B=∠C=(180°-∠BAC)=45°,
∴∠ADC=∠B+∠BAD=45°+30°=75°,
∵∠DAC=∠BAC-∠BAD=90°-30°=60°,
∵AD=AE,
∴∠ADE=∠AED=(180°-∠DAC)=60°,
∴∠EDC=∠ADC-∠ADE=75°-60°=15°,
答:∠EDC的度數(shù)是15°.

(2)解:與(1)類似:∠B=∠C=(180°-∠BAC)=90°-α,
∴∠ADC=∠B+∠BAD=90°-α+30°=120°-α,
∵∠DAC=∠BAC-∠BAD=α-30°,
∴∠ADE=∠AED=(180°-∠DAC)=105°-α,
∴∠EDC=∠ADC-∠ADE=(120°-α)-(105°-α)=15°,
答:∠EDC的度數(shù)是15°.

(3)∠EDC與∠BAD的數(shù)量關系是∠EDC=∠BAD.
分析:(1)根據(jù)等腰三角形性質(zhì)求出∠B的度數(shù),根據(jù)三角形的外角性質(zhì)求出∠ADC,求出∠DAC,根據(jù)等腰三角形性質(zhì)求出∠ADE即可;
(2)根據(jù)等腰三角形性質(zhì)求出∠B的度數(shù),根據(jù)三角形的外角性質(zhì)求出∠ADC,求出∠DAC,根據(jù)等腰三角形性質(zhì)求出∠ADE即可;
(3)根據(jù)(1)(2)的結論猜出即可.
點評:本題主要考查學生運用等腰三角形性質(zhì),三角形的內(nèi)角和定理,三角形的外角性質(zhì)進行推理的能力,題目比較典型,是一道很好的題目,關鍵是進行推理和總結規(guī)律.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,BE⊥AC,垂足為E,則∠1與∠A的關系式為( 。
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰△ABC中,AB=AC,AB的垂直平分線DE交AB于點D,交另一腰AC于點E,若∠EBC=15°,則∠A=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,在等腰△ABC中,AB=AC,∠ABC=α,在四邊形BDEC中,DB=DE,∠BDE=2α,M為CE的中點,連接AM,DM.
(1)在圖中畫出△DEM關于點M成中心對稱的圖形;
(2)求證AM⊥DM;
(3)當α=
45°
,AM=DM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•麗水)如圖,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分線與AB的中垂線交于點O,點C沿EF折疊后與點O重合,則∠CEF的度數(shù)是
50°
50°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在等腰△ABC中,AB=AC=10cm,直線DE垂直平分AB,分別交AB、AC于D、E兩點.若BC=8cm,則△BCE的周長是
18
18
cm.

查看答案和解析>>

同步練習冊答案