(1998•寧波)某房地產(chǎn)公司要在一地塊(圖中矩形ABCD)上,規(guī)劃建造一個(gè)小區(qū)公園(矩形GHCK),為了使文物保護(hù)區(qū)△AEF不被破壞,矩形公園的頂點(diǎn)G不能在文物保護(hù)區(qū)內(nèi),已知AB=200m,AD=160m,AE=60m;AF=40m.
(1)當(dāng)矩形小區(qū)公園的頂點(diǎn)G恰是EF的中點(diǎn)時(shí),求公園的面積;
(2)當(dāng)G在EF上什么位置時(shí),公園面積最大?

【答案】分析:(1)本題中我們可設(shè)DK的值是xm,那么根據(jù)∠FEA的正切值,我們不難得出BH=(40-x)m,此時(shí)便可根據(jù)矩形的面積公式,用DK、BH表示出KC、CH,以得出公園的面積與DK的函數(shù)關(guān)系式,然后G在EF中點(diǎn)時(shí),DK=30m,可將x=30代入函數(shù)式中求出公園的面積.
(2)根據(jù)(1)得出的函數(shù)的性質(zhì),即可得出公園的最大值以及此時(shí)DK的長(zhǎng),有了DK的長(zhǎng),就能求出G在EF上的位置了.
解答:解:(1)過(guò)點(diǎn)G作GP⊥AD于P,作GQ⊥AB于Q,
∴∠FPG=∠GQE=90°,
∵EG=FG,
∵PH∥AB,
∴∠FGP=∠GEQ,
∴△FPG≌△GQE(AAS),
∴GQ=FP,QE=PG,
∴DK=QE,F(xiàn)P=BH,
∴FP:DK=AF:AE=2:3,
設(shè)DK=xm,那么BH=(40-x)m;
設(shè)公園的面積為ym2,由題意可知:
y=(200-x)(160-40+x)=-x2+x+24000(0≤x≤60)
當(dāng)G在EF中點(diǎn)時(shí),∵AE=60m,
∴DK=30m.
那么y=(200-30)×(160-40+20)=23800m2
即當(dāng)頂點(diǎn)G在EF中點(diǎn)時(shí),公園的面積是23800平方米.

(2)由(1)的函數(shù)關(guān)系式知
y=-(x-10)2+,
因此當(dāng)x=10時(shí)公園的面積最大,此時(shí)即當(dāng)GF=EF時(shí),公園的面積最大.
點(diǎn)評(píng):本題主要考查了二次函數(shù)的應(yīng)用,弄清楚DK,BH之間的數(shù)量關(guān)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:1998年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:解答題

(1998•寧波)某水廠蓄水池有2個(gè)進(jìn)水管,每個(gè)進(jìn)水管進(jìn)水量為每小時(shí)80噸,所有出水管的總出水量為每小時(shí)120噸.已知蓄水池已存水400噸.
(1)當(dāng)2個(gè)進(jìn)水管進(jìn)水,同時(shí)所有出水管放水時(shí),寫出蓄水池中存水量y(噸)與時(shí)間t(小時(shí))的函數(shù)關(guān)系式;
(2)根據(jù)該水廠的設(shè)計(jì)要求,當(dāng)蓄水池存水量少于80噸時(shí),必須停止放水,在原存水量不變的情況下,用一個(gè)進(jìn)水管進(jìn)水,同時(shí)所有出水管放水,問(wèn)至多能放水多少小時(shí)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1998年全國(guó)中考數(shù)學(xué)試題匯編《分式方程》(01)(解析版) 題型:解答題

(1998•寧波)某車間加工30個(gè)零件,甲工人單獨(dú)做,能按計(jì)劃完成任務(wù),乙工人單獨(dú)做能提前一天半完成任務(wù).已知乙工人每天比甲工人多做1個(gè)零件,問(wèn)甲工人每天能做幾個(gè)零件,原計(jì)劃幾天完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1998年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(02)(解析版) 題型:解答題

(1998•寧波)某車間加工30個(gè)零件,甲工人單獨(dú)做,能按計(jì)劃完成任務(wù),乙工人單獨(dú)做能提前一天半完成任務(wù).已知乙工人每天比甲工人多做1個(gè)零件,問(wèn)甲工人每天能做幾個(gè)零件,原計(jì)劃幾天完成?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1998年浙江省寧波市中考數(shù)學(xué)試卷 題型:解答題

(1998•寧波)某車間加工30個(gè)零件,甲工人單獨(dú)做,能按計(jì)劃完成任務(wù),乙工人單獨(dú)做能提前一天半完成任務(wù).已知乙工人每天比甲工人多做1個(gè)零件,問(wèn)甲工人每天能做幾個(gè)零件,原計(jì)劃幾天完成?

查看答案和解析>>

同步練習(xí)冊(cè)答案