設(shè)中,D,若,解三角形ABC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•柳州)如圖,在△ABC中,AB=2,AC=BC=
5

(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請你分別寫出A、B、C三點(diǎn)的坐標(biāo);
(2)求過A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線的解析式;
(3)若D為拋物線上的一動點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時,S△ABD=
1
2
S△ABC
(4)如果將(2)中的拋物線向右平移,且與x軸交于點(diǎn)A′B′,與y軸交于點(diǎn)C′,當(dāng)平移多少個單位時,點(diǎn)C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).
 
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當(dāng)x1=1時,即y2=1,∴y1=1,y2=-1.
當(dāng)x2=3,即y2=3,∴y3=
3
,y4=-
3

所以,原方程的解是y1=1,y2=-1,y3=
3
,y4=-
3

再如x2-2=4
x2-2
,可設(shè)y=
x2-2
,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

根據(jù)所給的基本材料,請你進(jìn)行適當(dāng)?shù)奶幚,編寫一道綜合題.
編寫要求:①提出具有綜合性、連續(xù)性的三個問題;②給出正確的解答過程;③寫出編寫意圖和學(xué)生答題情況的預(yù)測.
材料①:如圖,先把一矩形紙片ABCD對折,得到折痕MN,然后把B點(diǎn)疊在折痕線上,得到△ABE,再過點(diǎn)B把矩形ABCD第三次折疊,使點(diǎn)D落在直線AD上,得到折痕PQ.當(dāng)沿著BE第四次將該紙片折疊后,點(diǎn)A就會落在EC上.
精英家教網(wǎng)
材料②:已知AC是∠MAN的平分線.
(1)在圖1中,若∠MAN=120°,∠ABC=ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由;
(3)在圖3中:若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,
則AB+AD=
 
AC(用含α的三角函數(shù)表示).
精英家教網(wǎng)
材料③:
已知:如圖甲,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,點(diǎn)P由B出發(fā)沿線段BA向點(diǎn)A勻速運(yùn)動,速度為1cm/s;點(diǎn)Q由A出發(fā)沿線段AC向點(diǎn)C勻速運(yùn)動,速度為2cm/s;連接PQ,設(shè)運(yùn)動的時間為t(s)(0<t<2).
精英家教網(wǎng)
編寫試題選取的材料是
 
(填寫材料的序號)
編寫的試題是:(1)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式.
(2)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值.
(3)如圖(2),連接PC,并把△PQC沿QC翻折得到四邊形PQP'C.是否存在某一時刻t,使四邊形PQP'C為菱形?若存在,求出此時菱形的邊長.
試題解答(寫出主要步驟即可):(1)過點(diǎn)Q作QD⊥AP于點(diǎn)D,證△AQD∽△ABC,利用相似性質(zhì)及面積解答;
(2)分別求得Rt△ACB的周長和面積,由周長求出t,代入函數(shù)解析式驗(yàn)證;
(3)利用余弦定理得出PC、PQ,聯(lián)立方程,求得t,再代入PC解得答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在△ABC中,AB=2,AC=BC=數(shù)學(xué)公式
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請你分別寫出A、B、C三點(diǎn)的坐標(biāo);
(2)求過A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線的解析式;
(3)若D為拋物線上的一動點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時,S△ABD=數(shù)學(xué)公式S△ABC
(4)如果將(2)中的拋物線向右平移,且與x軸交于點(diǎn)A′B′,與y軸交于點(diǎn)C′,當(dāng)平移多少個單位時,點(diǎn)C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).

附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當(dāng)x1=1時,即y2=1,∴y1=1,y2=-1.
當(dāng)x2=3,即y2=3,∴y3=數(shù)學(xué)公式,y4=-數(shù)學(xué)公式
所以,原方程的解是y1=1,y2=-1,y3=數(shù)學(xué)公式,y4=-數(shù)學(xué)公式
再如x2-2=4數(shù)學(xué)公式,可設(shè)y=數(shù)學(xué)公式,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣西自治區(qū)中考真題 題型:解答題

如圖,在△ABC中,AB=2,AC=BC= 5 .
(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請你分別寫出A、B、C三點(diǎn)的坐標(biāo);
(2)求過A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線的解析式;
(3)若D為拋物線上的一動點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時,S△ABD=S△ABC;
(4)如果將(2)中的拋物線向右平移,且與x軸交于點(diǎn)A′B′,與y軸交于點(diǎn)C′,當(dāng)平移多少個單位時,點(diǎn)C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).
附:閱讀材料
一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.
當(dāng)x1=1時,即y2=1,∴y1=1,y2=-1.
當(dāng)x2=3,即y2=3,∴y3= ,y4=- .所以,原方程的解是y1=1,y2=-1,y3= ,
y4=-  ,再如 ,可設(shè) ,用同樣的方法也可求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=2,AC=BC= 5 .

(1)以AB所在的直線為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系如圖,請你分別寫出A、B、C三點(diǎn)的坐標(biāo);

(2)求過A、B、C三點(diǎn)且以C為頂點(diǎn)的拋物線的解析式;

(3)若D為拋物線上的一動點(diǎn),當(dāng)D點(diǎn)坐標(biāo)為何值時,S△ABD=S△ABC

(4)如果將(2)中的拋物線向右平移,且與x軸交于點(diǎn)A′B′,與y軸交于點(diǎn)C′,當(dāng)平移多少個單位時,點(diǎn)C′同時在以A′B′為直徑的圓上(解答過程如果有需要時,請參看閱讀材料).

附:閱讀材料

一元二次方程常用的解法有配方法、公式法和因式分解法,對于一些特殊方程可以通過換元法轉(zhuǎn)化為一元二次方程求解.如解方程:y4-4y2+3=0.

解:令y2=x(x≥0),則原方程變?yōu)閤2-4x+3=0,解得x1=1,x2=3.

當(dāng)x1=1時,即y2=1,∴y1=1,y2=-1.

當(dāng)x2=3,即y2=3,∴y3= 3 ,y4=- 3 .

所以,原方程的解是y1=1,y2=-1,y3= 3 ,y4=- 3 .

再如 ,可設(shè) ,用同樣的方法也可求解.

查看答案和解析>>

同步練習(xí)冊答案