【題目】如圖①,在平面直角坐標(biāo)系中,將ABCD放置在第一象限,且ABx軸,直線y=-x從原點(diǎn)出發(fā)沿x軸正方向平移,在平移過(guò)程中直線被平行四邊形截得的線段長(zhǎng)度l與直線在x軸上平移的距離m的函數(shù)圖象如圖②所示,那么AD的長(zhǎng)為__________

【答案】

【解析】

根據(jù)圖象可以得到當(dāng)移動(dòng)的距離是4時(shí),直線經(jīng)過(guò)點(diǎn)A,當(dāng)移動(dòng)距離是8時(shí),直線經(jīng)過(guò)D,在移動(dòng)距離是9時(shí)經(jīng)過(guò)B,得到AB=9-4=5, , DMAB于點(diǎn)M,求出MN的值,再根據(jù)勾股定理即可得到答案;

解:根據(jù)圖象可以得到當(dāng)移動(dòng)的距離是4時(shí),直線經(jīng)過(guò)點(diǎn)A,當(dāng)移動(dòng)距離是8時(shí),直線經(jīng)過(guò)D,在移動(dòng)距離是9時(shí)經(jīng)過(guò)B,
AB=9-4=5,
如圖1,當(dāng)直線經(jīng)過(guò)D點(diǎn),設(shè)交ABN,則, DMAB于點(diǎn)M

y=-xx軸形成的角是45°,

又∵ABx軸,
∴∠DNM=45°,

,

,

(勾股定理);

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,DABC的邊AB上一點(diǎn),CEABDEAC于點(diǎn)F,若FA=FC

1)求證:四邊形ADCE是平行四邊形;

2)若AEECEF=EC=5,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了保護(hù)環(huán)境,某企業(yè)決定購(gòu)買10臺(tái)污水處理設(shè)備;現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格、月處理污水量及年消耗費(fèi)如下表:

A

B

價(jià)格(萬(wàn)元/臺(tái))

12

10

處理污水量(噸/月)

240

200

年消耗費(fèi)(萬(wàn)元/臺(tái))

1

1

經(jīng)預(yù)算,該企業(yè)購(gòu)買設(shè)備的資金不高于105萬(wàn)元。

1請(qǐng)你設(shè)計(jì)該企業(yè)有幾種購(gòu)買方案;

2若該企業(yè)每月產(chǎn)生的污水量為2040噸,為了節(jié)約資金,應(yīng)選擇哪種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)B6,0)的直線AB與直線OA相交于點(diǎn)A4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng).

1)求直線AB的解析式.

2)求△OAC的面積.

3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在菱形ABCD中,∠B=60°,MAB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BCD的路徑運(yùn)動(dòng),到達(dá)點(diǎn)D時(shí)停止.連接MP,設(shè)點(diǎn)P運(yùn)動(dòng)的路程為xMP2=y,若yx的函數(shù)圖象大致如圖②所示,則菱形ABCD的周長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】班級(jí)組織同學(xué)乘大巴車前往“研學(xué)旅行”基地開(kāi)展愛(ài)國(guó)教育活動(dòng),基地離學(xué)校有90公里,隊(duì)伍8:00從學(xué)校出發(fā).蘇老師因有事情,8:30從學(xué)校自駕小車以大巴1.5倍的速度追趕,追上大巴后繼續(xù)前行,結(jié)果比隊(duì)伍提前15分鐘到達(dá)基地.問(wèn):

(1)大巴與小車的平均速度各是多少?

(2)蘇老師追上大巴的地點(diǎn)到基地的路程有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知:ABCD,點(diǎn)E,F分別在AB,CD上,且OEOF

(1)求證:∠1+∠2=90°;

(2)如圖2,分別在OE,CD上取點(diǎn)G,H,使FO平分∠CFG,EO平分∠AEH,求證:FGEH

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A表示﹣10,點(diǎn)B表示11,點(diǎn)C表示18.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿?cái)?shù)軸正方向以每秒2個(gè)單位的速度勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿?cái)?shù)軸負(fù)方向以每秒1個(gè)單位的速度勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),P、Q兩點(diǎn)相遇?相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是多少?

(2)在點(diǎn)Q出發(fā)后到達(dá)點(diǎn)B之前,求t為何值時(shí),點(diǎn)P到點(diǎn)O的距離與點(diǎn)Q到點(diǎn)B的距離相等;

(3)在點(diǎn)P向右運(yùn)動(dòng)的過(guò)程中,NAP的中點(diǎn),在點(diǎn)P到達(dá)點(diǎn)C之前,求2CN﹣PC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,BD平分∠ABCAC于點(diǎn)D,AE∥BDCB的延長(zhǎng)線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( )

A. 40° B. 45° C. 60° D. 70°

查看答案和解析>>

同步練習(xí)冊(cè)答案