【題目】已知點O是等腰直角三角形ABC斜邊上的中點,AB=BC,E是AC上一點,連結(jié)EB.
(1) 如圖1,若點E在線段AC上,過點A作AM⊥BE,垂足為M,交BO于點F.求證:OE=OF;
(2)如圖2,若點E在AC的延長線上,AM⊥BE于點M,交OB的延長線于點F,其它條件不變,則結(jié)論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
【答案】見解析
【解析】試題分析:(1)由三角形ABC是等腰直角三角形,AB=BC,得到∠BAC=∠ACB=45°,又由點O是AC邊上的中點,得到∠BOE=∠AOF=90°,∠ABO=∠CBO=45°,從而得到∠BAC=∠ABO,OB=OA,又由AM⊥BE,得到∠MEA+∠MAE=90°=∠AFO+∠MAE,
故有∠MEA=∠AFO,得到Rt△BOE≌Rt△AOF,從而得到結(jié)論;
(2)同(1)可證明Rt△BOE≌Rt△AOF,從而得到OE=OF.
試題解析:(1)證明:∵三角形ABC是等腰直角三角形,AB=BC,
∴∠BAC=∠ACB=45°
又點O是AC邊上的中點,
∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°
∴∠BAC=∠ABO,∴OB=OA,
又∵AM⊥BE,
∴∠MEA+∠MAE=90°=∠AFO+∠MAE,
∴∠MEA=∠AFO,
∴Rt△BOE≌Rt△AOF,∴OE=OF;
(2)OE=OF成立;
證明:∵三角形ABC是等腰直角三角形,AB=BC,
∴∠BAC=∠ACB=45°
又點O是AC邊上的中點,
∴∠BOE=∠AOF=90°,∠ABO=∠CBO=45°
∴∠BAC=∠ABO,∴OB=OA,
又∵AM⊥BE,
∴∠F+∠MBF=90°=∠B+∠OBE,
又∵∠MBF=∠OBE,∴∠F=∠E,
∴Rt△BOE≌Rt△AOF,
∴OE=OF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一漁船由西往東航行,在點測得海島位于北偏東的方向,前進海里到達點,此時,測得海島位于北偏東的方向,則海島到航線的距離等于________海里.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,∠BAC=90°,AE是過A點的一條直線,且B,C在AE的異側(cè),BD⊥AE于D,CE⊥AE于E.
(1)△ABD與△CAE全等嗎?BD與DE+CE相等嗎?請說明理由。
(2)如圖2,若直線AE繞點A旋轉(zhuǎn)到圖②所示的位置(BD<CE)時,其余條件不變,則BD與DE、CE的關系如何?請說明理由
(3)如圖3,若直線AE繞點A旋轉(zhuǎn)到圖③所示的位置(BD>CE)時,其余條件不變,則BD與DE、CE的關系如何?
(4)根據(jù)以上的討論,請用簡潔的語言表達BD與DE、CE的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE,則∠AEB的度數(shù)為__________.
(2)如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE.求∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一枚棋子放在七角棋盤的第0號角,現(xiàn)依逆時針方向移動這枚棋子,其各步依次移動1,2,3,…,n個角,如第一步從0號角移動到第1號角,第二步從第1號角移動到第3號角,第三步從第3號角移動到第6號角,….若這枚棋子不停地移動下去,則這枚棋子永遠不能到達的角的個數(shù)是( )
A.0 B.1 C.2 D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的中,,且為上一點.今打算在上找一點,在上找一點,使得與全等,以下是甲、乙兩人的作法:
(甲)連接,作的中垂線分別交、于點、點,則、兩點即為所求
(乙)過作與平行的直線交于點,過作與平行的直線交于點,則、兩點即為所求
對于甲、乙兩人的作法,下列判斷何者正確?( 。
A. 兩人皆正確B. 兩人皆錯誤
C. 甲正確,乙錯誤D. 甲錯誤,乙正確
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點D為BC的中點.
(1)如圖①,若點E、F分別為AB、AC上的點,且DE⊥DF,求證:BE=AF;
(2)若點E、F分別為AB、CA延長線上的點,且DE⊥DF,那么BE=AF嗎?請利用圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC和△ECD都是等邊三角形,B、C、D三點在一條直線上,AD與BE相交于點O,AD與CE相交于點F,AC與BE相交于點G.
(1)△BCE與△ACD全等嗎?請說明理由.
(2)求∠BOD度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com