【題目】點A(x1,y1),B(x2,y2),C(x3,y3)在反比例函數(shù)y= 的圖象上,若x1<x2<0<x3,則y1,y2,y3的大小關(guān)系是( 。
A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y3
科目:初中數(shù)學 來源: 題型:
【題目】攀枝花芒果由于品質(zhì)高、口感好而聞名全國,通過優(yōu)質(zhì)快捷的網(wǎng)絡(luò)銷售渠道,小明的媽媽先購買了2箱A品種芒果和3箱B品種芒果,共花費450元;后又購買了l箱A品種芒果和2箱B品種芒果,共花費275元(每次兩種芒果的售價都不變).
(1)問A品種芒果和B品種芒果的售價分別是每箱多少元?
(2)現(xiàn)要購買兩種芒果共18箱,要求B品種芒果的數(shù)量不少于A品種芒果數(shù)量的2倍,但不超過A品種芒果數(shù)量的4倍,請你設(shè)計購買方案,并寫出所需費用最低的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(5,3),點B(-3,3),過點A的直線(m為常數(shù))與直線x=1交于點P,與x軸交于點C,直線BP與x軸交于點D。
(1)求點P的坐標;
(2)求直線BP的解析式,并直接寫出△PCD與△PAB的面積比;
(3)若反比例函數(shù)(k為常數(shù)且k≠0)的圖象與線段BD有公共點時,請直接寫出k的最大值或最小值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+4(k≠0)與x軸、y軸分別交于點B,A,直線y=-2x+1與y軸交于點C,與直線y=kx+4交于點D,△ACD的面積是 .
(1)求直線AB的表達式;
(2)設(shè)點E在直線AB上,當△ACE是直角三角形時,請直接寫出點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某巡警騎摩托車在一條南北大道上巡邏,某天他從崗?fù)こ霭l(fā),晚上停留在A處,規(guī)定向北方向為正,當天行駛情況記錄如下(單位:千米):+10,﹣8,+7,﹣15,+6,﹣16,+4,﹣2
(1)A處在崗?fù)ず畏?距離崗?fù)ざ噙h?
(2)若摩托車每行駛1千米耗油0.5升,這一天共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D為AB邊上一點,E為CD中點,AC=,∠ABC=30°,∠A=∠BED=45°,則BD的長為( 。
A. B. +1﹣ C. ﹣ D. ﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,將△ABC繞點C逆時針旋轉(zhuǎn),旋轉(zhuǎn)后的圖形是△A′B′C,點A的對應(yīng)點A′落在中線AD上,且點A′是△ABC的重心,A′B′與BC相交于點E,那么BE:CE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明將一根長為20厘米的鐵絲剪成兩段,然后分別圍成兩個正方形。設(shè)其中一段鐵絲長為x厘米。
(1)設(shè)較長的一段鐵絲長為xcm,請計算出這兩個正方形的面積之差;
(2)是否存在合適的x的值,使兩個正方形的面積剛好相差5cm2?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,∠C=90,AC<BC,D為BC上一點,且到A,B兩點的距離相等.
(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);
(2)連結(jié)AD,若∠B=37°,則∠CAD=_________度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com