【題目】如圖,在中,的高,的角平分線,若

1)求的度數(shù);

2)若點(diǎn)F為線段上任一點(diǎn),當(dāng)為直角三角形時(shí),求的度數(shù).

【答案】(1);(2)當(dāng)為直角三角形時(shí),的度數(shù)為

【解析】

1)根據(jù)角平分線的定義、三角形內(nèi)角和定理計(jì)算即可;

2)分∠EFC=90°和∠FEC=90°兩種情況解答即可.

1)∵BEABC的角平分線,

∴∠CBE=EBA=32°,

∵∠AEB=CBE+C

∴∠C=70°-32°=38°,

ADABC的高,

∴∠ADC=90°

∴∠CAD=90°-C=52°;

2)當(dāng)∠EFC=90°時(shí),∠BEF=90°-CBE=58°,

當(dāng)∠FEC=90°時(shí),∠BEF=90°70°=20°,

故答案為:58°20°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】沙沙騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過(guò)的某書店,買到書后繼續(xù)去學(xué)校. 以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.

根據(jù)圖中提供的信息回答下列問(wèn)題:

1)沙沙家到學(xué)校的路程是多少米?

2)在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段沙沙騎車速度最快,最快的速度是多少米/分?

3)沙沙在書店停留了多少分鐘?

4)本次上學(xué)途中,沙沙一共行駛了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動(dòng)課時(shí)間測(cè)量位于烈山山頂?shù)难椎鄣裣窀叨,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進(jìn)1620尺到達(dá)E點(diǎn),在點(diǎn)E處測(cè)得雕像頂端A的仰角為60°,求雕像AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知線段AB、CD相交于點(diǎn)O,連接AC、BD,我們把形如圖①的圖形稱之為“8字形

1)如圖①,若∠A=D,判斷∠C與∠B的數(shù)量關(guān)系,并說(shuō)明理由;

2)如圖②,∠CAB和∠BDC的平分線APDP相交于點(diǎn)P,并且與CD、AB分別相交于M、N,試解答下列問(wèn)題:

①仔細(xì)觀察,在圖②中有 個(gè)“8字形;

②∠B=80°,∠C=100°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1是一副創(chuàng)意卡通圓規(guī),圖2是其平面示意圖,OA是支撐臂,OB是旋轉(zhuǎn)臂,使用時(shí),以點(diǎn)A為支撐點(diǎn),鉛筆芯端點(diǎn)B可繞點(diǎn)A旋轉(zhuǎn)作出圓.已知OA=OB=10cm.

(1)當(dāng)∠AOB=18°時(shí),求所作圓的半徑;(結(jié)果精確到0.01cm)
(2)保持∠AOB=18°不變,在旋轉(zhuǎn)臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長(zhǎng)度.(結(jié)果精確到0.01cm)
(參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學(xué)計(jì)算器)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從D點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與D點(diǎn)的水平距離為9m.高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是( )

A.球不會(huì)過(guò)網(wǎng)
B.球會(huì)過(guò)球網(wǎng)但不會(huì)出界
C.球會(huì)過(guò)球網(wǎng)并會(huì)出界
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn) E 在正方形 ABCD AB 邊上(不與點(diǎn) A,B 重合),BD 是對(duì)角線,延長(zhǎng) AB 到點(diǎn) F,使 BFAE,過(guò)點(diǎn) E BD 的垂線,垂足為 M,連接 AMCF

1)求證:MBME;

2)①用等式表示線段 AM CF 的數(shù)量關(guān)系,并證明;

②用等式表示線段 AM,BMDM 之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中裝有顏色不同的8個(gè)小球,其中紅球3個(gè),黑球5個(gè).

(1)先從袋中取出m(m>1)個(gè)紅球,再?gòu)拇须S機(jī)摸出1個(gè)球,將摸出黑球記為事件A.請(qǐng)完成下列表格:

事件A

必然事件

隨機(jī)事件

m的值

(2)先從袋中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)球是黑球的概率是,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:射線PO與⊙O交于A、B兩點(diǎn),PC、PD分別切⊙O于點(diǎn)C、D.

(1)請(qǐng)寫出兩個(gè)不同類型的正確結(jié)論;
(2)若CD=12,tan∠CPO= ,求PO的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案