精英家教網如圖,將正方形ABCD折疊,使點C與點D重合于正方形內點P處,折痕分別為AF、BE,如果正方形ABCD的邊長是2,那么△EPF的面積是
 
分析:過P作PH⊥DC于H,交AB于G,由正方形的性質得到AD=AB=BC=DC=2;∠D=∠C=90°;再根據(jù)折疊的性質有PA=PB=2,∠FPA=∠EPB=90°,可判斷△PAB為等邊三角形,利用等邊三角形的性質得到∠APB=60°,PG=
3
2
AB=
3
,于是∠EPF=120°,PH=HG-PG=2-
3
,得∠HEP=30°,然后根據(jù)含30°的直角三角形三邊可求出HE,得到EF,最后利用三角形的面積公式計算即可.
解答:精英家教網解:過P作PH⊥DC于H,交AB于G,如圖,
則PG⊥AB,
∵四邊形ABCD為正方形,
∴AD=AB=BC=DC=2;∠D=∠C=90°,
又∵將正方形ABCD折疊,使點C與點D重合于形內點P處,
∴PA=PB=2,∠FPA=∠EPB=90°,
∴△PAB為等邊三角形,
∴∠APB=60°,PG=
3
2
AB=
3
,
∴∠EPF=120°,PH=HG-PG=2-
3
,
∴∠HEP=30°,
∴HE=
3
PH=
3
(2-
3
)=2
3
-3,
∴EF=2HE=4
3
-6,
∴△EPF的面積=
1
2
FE•PH=
1
2
(2-
3
)(4
3
-6)
=7
3
-12.
故答案為7
3
-12.
點評:本題考查了折疊的性質:折疊前后的兩圖形全等,即對應角相等,對應線段相等.也考查了正方形和等邊三角形的性質以及含30°的直角三角形三邊的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

探究問題:
(1)方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠
 

又AG=AE,AF=AF
∴△GAF≌
 

 
=EF,故DE+BF=EF.
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=
1
2
∠DAB.試猜想DE,BF,EF之間有何數(shù)量關系,并證明你的猜想.
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=
1
2
∠DAB,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將正方形紙片按圖甲中的虛線對折得到圖乙,再對折得到圖丙,在圖丙中沿虛線將△ABC(AB≠BC)剪下,再將△ABC展開鋪平所得圖形是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖,四邊形ABCD是正方形,△ADF旋轉一定角度后得到△ABE,如果AF=4,AB=7:
①寫出圖中的旋轉過程;
②求BE的長;
③在圖中作出延長BE與DF的交點G,并說明BG⊥DF.
(2)如圖,將三角尺ABC(其中∠ABC=60°,∠C=90°)繞點B按順時針轉動一個角度到A1BC1的位置,使得點A、B、C1在同一條直線上,那么這個角度等于
A
A

A.120°    B.90°  C.60°     D.30°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,將三角形ABC進行平移,使點A的對應點為點A′
(1)請你畫出平移后所得的三角形A′B′C′(畫圖工具不限).
(2)若每個小正方形的面積為1,求線段AC在平移中掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年江蘇省鹽城市建湖縣近湖中學九年級(上)數(shù)學周練作業(yè)(4)(解析版) 題型:解答題

探究問題:
(1)方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠______.
又AG=AE,AF=AF
∴△GAF≌______.
∴______=EF,故DE+BF=EF.

(2)方法遷移:
如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關系,并證明你的猜想.

(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).

查看答案和解析>>

同步練習冊答案