如圖,在等腰三角形ABC中,AB=AC=10cm,∠ABC=300,以BC所在直線為x軸,以BC邊上的高所在的直線為y軸建立平面直角三角形系。
(1)求直線AC的解析式;
(2)有一動(dòng)點(diǎn)P以1cm/s的速度從點(diǎn)B開(kāi)始沿x軸向其正方向運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)為t秒(單位:s)。
①當(dāng)t為何值時(shí),ΔABP是直角三角形;
②現(xiàn)有另一點(diǎn)Q與點(diǎn)P同時(shí)從點(diǎn)B開(kāi)始,以1cm/s的速度從點(diǎn)B開(kāi)始沿折線BAC運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng)。試寫(xiě)出ΔBPQ的面積S關(guān)于t的函數(shù)解析式,并寫(xiě)出自變量的取值范圍。
(1)y=-x+5 (2)t=5;t=
(3)當(dāng)0<t<10時(shí),S=t2;10<t≤20時(shí),S=-t2+5t
【解析】
試題分析:(1)AC=10,∠ABC=300因?yàn)槭堑妊切蜛BC,所以O(shè)A="5" ,從而可得到OC=5.那么A(0,5),C(5,0),設(shè)直線AC的解析式為y=ax+b,代入A,C兩點(diǎn),得y=-x+5
(2)ΔABP是直角三角形也即p點(diǎn)運(yùn)動(dòng)到0點(diǎn),即運(yùn)動(dòng)的距離為線段BO,BO=OC。所以運(yùn)動(dòng)的時(shí)間為5s
當(dāng)∠BAP=900時(shí),此時(shí)的P點(diǎn)在X軸的正半軸。此時(shí)的p點(diǎn)可設(shè)為(x,0),由題可得,即X=,加上前面的5,得到t=
(3)0<t<10,即Q在BA點(diǎn)運(yùn)動(dòng)時(shí),S=txtx=
10<t≤20,Q在AC上運(yùn)動(dòng),設(shè)此時(shí)Q的坐標(biāo)為(m,m+5),再由5-(m+5)=(t-10)x得出Q點(diǎn)的縱坐標(biāo)為10-t,圍成的三角形面積=tx(10-t )x=-t2+5t
考點(diǎn):函數(shù)的解析式的求法,三角形的面積。
點(diǎn)評(píng):此題較難。有很強(qiáng)的綜合性。要求考生基礎(chǔ)扎實(shí),對(duì)問(wèn)題有較強(qiáng)的分析能力。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com