已知△ABC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:
(1)作∠ABC的平分線BD交AC于點D;
(2)作線段BD的垂直平分線交AB于點E,交BC于點F.
(3)連接ED、FD,判斷四邊形BEDF是什么四邊形.

【答案】分析:(1)以點B為圓心,任意長為半徑畫弧與AB,BC交于兩點,再以這兩點為圓心,大于兩點間距離的一半為半徑畫弧,連接兩弧的交點與B,與AC交于點D.BD就是所求的角平分線.
(2)分別以B、D為圓心,大于BD的一半為半徑畫弧,連接兩弧的交點,交AB于點E,交BC與點F,EF就是所求的線段的垂直平分線;
(3)因為EF垂直平分BD,可求證△BOE≌△DOE、△BOF≌△DOF,又因為BD平分∠ABC,所以可證明ED∥BF、DF∥BE,
BE=DE,故四邊形BEDF是菱形.
解答:解:從圖中可能看出BD平分∠ABC,EF垂直平分BD;
(3)平行四邊形,如上圖:
∵EF垂直平分BD
∴OB=OD,∠BOE=∠DOE
∵OE=OE
∴△BOE≌△DOE
∴∠EBO=∠EDO,BE=DE
∵∠EBO=∠FBO
∴∠EDO=∠FBO
∴ED∥BF
同理可證DF∥BE
∴四邊形BEDF是菱形.
點評:本題主要考查了平行四邊形的判定、線段垂直平分線的性質(zhì)和角平分線的性質(zhì).兩組對邊分別平行的四邊形是平行四邊形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、已知△ABC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:
(1)作∠ABC的平分線BD交AC于點D;
(2)作線段BD的垂直平分線交AB于點E,交BC于點F.
(3)連接ED、FD,判斷四邊形BEDF是什么四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法).
(1)作∠ABC的平分線BD交AC于點D;
(2)作線段BD的垂直平分線交AB于點E,交BC于點F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC.利用直尺和圓規(guī),根據(jù)要求作圖,并解決后面的問題.
(1)作△ABC的角平分線AD;作∠CBE=∠ADC,BE交CA的延長線于點E.
(要求:用鉛筆作圖,保留作圖痕跡,不需寫作法和證明)
(2)圖中線段AB與線段AE相等嗎?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(江蘇南京) 題型:解答題

已知△ABC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:

(1)作∠ABC的平分線BD交AC于點D;
(2)作線段BD的垂直平分線交AB于點E,交BC于點F.由⑴、⑵可得:線段EF與線段BD的關(guān)系為     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年高級中等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)卷(江蘇南京) 題型:解答題

已知△ABC,利用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不要求寫作法),并根據(jù)要求填空:

(1)作∠ABC的平分線BD交AC于點D;

(2)作線段BD的垂直平分線交AB于點E,交BC于點F.由⑴、⑵可得:線段EF與線段BD的關(guān)系為     

 

查看答案和解析>>

同步練習(xí)冊答案