若四邊形ABCD的對(duì)角線AC與BD相交于點(diǎn)O,且OA=OB=OC=OD=
2
2
AB,則四邊形ABCD是正方形嗎?請(qǐng)說明理由.
考點(diǎn):正方形的判定
專題:
分析:根據(jù)平行四邊形的判定推出四邊形是平行四邊形,求出AC=BD,得出四邊形是矩形,根據(jù)勾股定理的逆定理求出AC⊥BD,根據(jù)正方形的判定推出即可.
解答:解:四邊形ABCD是正方形,
理由是:∵OA=OB=OC=OD,
∴AC=BD,四邊形ABCD是平行四邊形,
∴平行四邊形ABCD是矩形,
∵OA=OB=OC=OD=
2
2
AB,
∴OA2+OB2=AB2,
∴∠AOB=90°,
即AC⊥BD,
∴四邊形ABCD是正方形.
點(diǎn)評(píng):本題考查了勾股定理的逆定理,平行四邊形的判定,矩形的判定,正方形的判定的應(yīng)用,主要考查學(xué)生的推理能力,注意:對(duì)角線互相垂直的矩形是正方形,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,OE平分∠AOB,OD平分∠AOC,∠DOE=40°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

正△ABC邊長是12cm,則它的外接圓半徑是
 
cm,邊心距是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以O(shè)為圓心的兩個(gè)同心圓中,大圓的弦AB與小圓相切于點(diǎn)C,若大圓半徑為10cm,小圓半徑為6cm,則弦AB的長為( 。
A、2cmB、4cm
C、8cmD、16cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在⊙O中,C為弦AB上一點(diǎn),AC=2,BC=6,⊙O的半徑為5,則OC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用“☆”定義一種新運(yùn)算:對(duì)于任意有理數(shù)a和b,規(guī)定a☆b=
a+b-|a-b|
2
.例如:(-1)☆2=
-1+2-|-1-2|
2
=-1.
(1)計(jì)算:(-6)☆(-8)=
 

(2)從-
8
9
,-
7
9
,-
6
9
,-
5
9
,-
4
9
,-
3
9
,-
2
9
,-
1
9
,0,
1
9
2
9
,
3
9
4
9
,
5
9
,
6
9
,
7
9
,
8
9
中任選兩個(gè)有理數(shù)做a,b的值,并計(jì)算a☆b,那么所有運(yùn)算結(jié)果中的最大值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ABC=90°,AB=20,BC=15,點(diǎn)D為AC邊上的動(dòng)點(diǎn),點(diǎn)D從點(diǎn)C出發(fā),沿邊CA往A運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)點(diǎn)A時(shí)停止,若設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒,點(diǎn)D運(yùn)動(dòng)的速度為每秒2個(gè)單位長度.
(1)當(dāng)t=2時(shí),CD=
 
,AD=
 
;(請(qǐng)直接寫出答案)
(2)當(dāng)t=
 
時(shí),△CBD是直角三角形;(請(qǐng)直接寫出答案)
(3)求當(dāng)t為何值時(shí),△CBD是等腰三角形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某貿(mào)易公司購進(jìn)“長青”膠州大白菜,進(jìn)價(jià)為每棵20元,物價(jià)部門規(guī)定其銷售單價(jià)每棵不得超過80元,也不得低于30元.經(jīng)調(diào)查發(fā)現(xiàn):日均銷售量y(棵)與銷售單價(jià)x(元/棵)滿足一次函數(shù)關(guān)系,并且每棵售價(jià)60元時(shí),日均銷售90棵;每棵售價(jià)30元時(shí),日均銷售120棵.
(1)求日均銷售量y與銷售單價(jià)x的函數(shù)關(guān)系式;
(2)在銷售過程中,每天還要支出其他費(fèi)用200元,求銷售利潤w(元)與銷售單價(jià)x之間的函數(shù)關(guān)系式;并求當(dāng)銷售單價(jià)為何值時(shí),可獲得最大的銷售利潤?最大銷售利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡再求值:(x-
x
x2-1
)÷(2+
1
x-1
-
1
x+1
),其中x=
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案