【題目】如圖,以直角三角形a、b、c為邊,向外作等邊三角形,半圓,等腰直角三角形和正方形,上述四種情況的面積關系滿足S1+S2=S3圖形個數(shù)有(

A.1
B.2
C.3
D.4

【答案】D
【解析】解:(1)S1= a2 , S2= b2 , S3= c2
∵a2+b2=c2 ,
a2+ b2= c2
∴S1+S2=S3
2)S1= a2 , S2= b2 , S3= c2
∵a2+b2=c2 ,
a2+ b2= c2 ,
∴S1+S2=S3
3)S1= a2 , S2= b2 , S3= c2 ,
∵a2+b2=c2
a2+ b2= c2 ,
∴S1+S2=S3
4)S1=a2 , S2=b2 , S3=c2 ,
∵a2+b2=c2
∴S1+S2=S3
綜上,可得
面積關系滿足S1+S2=S3圖形有4個.
故選:D.
根據(jù)直角三角形a、b、c為邊,應用勾股定理,可得a2+b2=c2 . (1)第一個圖形中,首先根據(jù)等邊三角形的面積的求法,表示出3個三角形的面積;然后根據(jù)a2+b2=c2 , 可得S1+S2=S3 . (2)第二個圖形中,首先根據(jù)圓的面積的求法,表示出3個半圓的面積;然后根據(jù)a2+b2=c2 , 可得S1+S2=S3 . (3)第三個圖形中,首先根據(jù)等腰直角三角形的面積的求法,表示出3個等腰直角三角形的面積;然后根據(jù)a2+b2=c2 , 可得S1+S2=S3 . (4)第四個圖形中,首先根據(jù)正方形的面積的求法,表示出3個正方形的面積;然后根據(jù)a2+b2=c2 , 可得S1+S2=S3 . (1)此題主要考查了勾股定理的應用,要熟練掌握,解答此題的關鍵是要明確:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.(2)此題還考查了等腰直角三角形、等邊三角形、圓以及正方形的面積的求法,要熟練掌握.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點P(m,4),與x軸交于點A(﹣3,0),與y軸交于點C,PB⊥x軸于點B,且AC=BC.

(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,求出點D的坐標;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為2,點E,F(xiàn)分別在邊AD,CD上,若∠EBF=45°,則△EDF的周長等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB//CD,BD平分∠ABC,∠2=∠3,BC⊥AC于C,DH⊥AB于H, DH交AC 于F,O是AB的中點,則下列說法正確的有( )

①BC=CD ②∠4=30° ③AH=HF ④OF//BD

A. ①②③ B. ②③④ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣ ),C(2,0),其對稱軸與x軸交于點D

(1)求二次函數(shù)的表達式及其頂點坐標;
(2)若P為y軸上的一個動點,連接PD,則 PB+PD的最小值為;
(3)M(x,t)為拋物線對稱軸上一動點
①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A、B、C、D是平面坐標系中坐標軸上的點,且△AOB≌△COD.設直線AB的表達式為y1=k1x+b1 , 直線CD的表達式為y2=k2x+b2 , 則k1k2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市對初二綜合素質(zhì)測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.
(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?
(2)某同學測試成績?yōu)?0分,他的綜合評價得分有可能達到A等嗎?為什么?
(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,3×3的方格分為上中下三層,第一層有一枚黑色方塊甲,可在方格A、B、C中移動,第二層有兩枚固定不動的黑色方塊,第三層有一枚黑色方塊乙,可在方格D、E、F中移動,甲、乙移入方格后,四枚黑色方塊構成各種拼圖.

(1)若乙固定在E處,移動甲后黑色方塊構成的拼圖是軸對稱圖形的概率是
(2)若甲、乙均可在本層移動.
①用樹形圖或列表法求出黑色方塊所構拼圖是軸對稱圖形的概率.
②黑色方塊所構拼圖是中心對稱圖形的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是⊙O直徑BD延長線上的一點,C在⊙O上,AC=BC,AD=CD

(1)求證:AC是⊙O的切線;
(2)若⊙O的半徑為2,求△ABC的面積.

查看答案和解析>>

同步練習冊答案