【題目】如圖,出租車是人們出行的一種便利交通工具,折線ABC是在我市乘出租車所付車費(fèi)y(元)與行車?yán)锍?/span>xkm)之間的函數(shù)關(guān)系圖象.

1)根據(jù)圖象,當(dāng)x≥3時(shí)yx的一次函數(shù),請(qǐng)寫出函數(shù)關(guān)系式;

2)某人乘坐13km,應(yīng)付多少錢?

3)若某人付車費(fèi)42元,出租車行駛了多少千米?

【答案】1y=x+;(221元;(328千米.

【解析】試題分析:(1)由于x≥3時(shí),直線過點(diǎn)(38)、(8,15),設(shè)解析式為設(shè)y=kx+b,利用待定系數(shù)法即可確定解析式;

2)把x=13代入解析式即可求得;

3)將y=42代入到(1)中所求的解析式,即可求出x

解:(1)當(dāng)x≥3時(shí),設(shè)解析式為設(shè)y=kx+b,

一次函數(shù)的圖象過B37)、C8,14),

,

解得,

當(dāng)x≥3時(shí),yx之間的函數(shù)關(guān)系式是y=x+;

2)當(dāng)x=13時(shí),y=×13+=21

答:乘車13km應(yīng)付車費(fèi)21元;

3)將y=42代入y=x+,得42=x+

解得x=28,

即出租車行駛了28千米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在2×2的正方形網(wǎng)格中有9個(gè)格點(diǎn),已經(jīng)取定點(diǎn)A,B,C,在余下的6個(gè)點(diǎn)中任取一點(diǎn)P,滿足△ABP與△ABC相似的概率是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點(diǎn)E是邊AD的中點(diǎn),EC交對(duì)角線BD于點(diǎn)F,若SDEC=3,則SBCF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)AC分別在x軸,y軸上,函數(shù)y=的圖象過點(diǎn)P4,3)和矩形的頂點(diǎn)Bm,n)(0m4).

1)求k的值;

2)連接PAPB,若△ABP的面積為6,求直線BP的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長(zhǎng),交AB延長(zhǎng)線于點(diǎn)E,連接BD,EC

(1)求證:四邊形BECD是平行四邊形;

(2)若∠A=50°,則當(dāng)∠BOD= ______ °時(shí),四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張長(zhǎng)方形紙片分別沿著EP,FP對(duì)折,使B落在B′,C落在C′.

(1)若點(diǎn)P,B′,C′在同一直線上(1),求兩條折痕的夾角∠EPF的度數(shù);

(2)若點(diǎn)P,B′,C′不在同一直線上(2),且∠B′PC′=10°,求∠EPF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點(diǎn),將Rt△ABC沿CD折疊,使B點(diǎn)落在AC邊上的B′處,則∠CDB′等于(
A.40°
B.60°
C.70°
D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,點(diǎn)F為正方形ABCD內(nèi)一點(diǎn),BFC逆時(shí)針旋轉(zhuǎn)后能與BEA重合

(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度為 度;

(2)判斷BEF的形狀為 ;

(3)若∠BFC=90°,說明AEBF.

查看答案和解析>>

同步練習(xí)冊(cè)答案