【題目】如圖,是一圓柱形輸水管的橫截面,陰影部分為有水部分,如果水面寬8cm,水的最大深度為2cm,求該輸水管的半徑是多少?

【答案】解:過(guò)點(diǎn)O做OC⊥AB于點(diǎn)D,連接OA.
設(shè)半徑長(zhǎng)為rcm,
∵OC⊥AB,
∴AD= AB
= ×8
=4(cm),
∵CD=2cm∴OD=r﹣2(cm)
在Rt△AOD中,由勾股定理得:(r﹣2)2+42=r2
r2﹣4r+4+42=42
4r=20
r=5,
答:該水管的半徑是5cm.

【解析】先過(guò)點(diǎn)O作OD⊥AB于點(diǎn)D,連接OA,由垂徑定理可知AD= AB,設(shè)OA=r,則OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用垂徑定理的推論,掌握推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧B、弦的垂直平分線經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧C、平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧;推論2 :圓的兩條平行弦所夾的弧相等即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點(diǎn)PAD邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)QBC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在這段時(shí)間內(nèi),線段PQ有(。┐纹叫杏AB?

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,數(shù)軸被折成90°,圓的周長(zhǎng)為4個(gè)單位長(zhǎng)度,在圓的4等分點(diǎn)處標(biāo)上數(shù)字0,1,2,3,先讓圓周上數(shù)字2所對(duì)應(yīng)的點(diǎn)與數(shù)軸上的數(shù)3所對(duì)應(yīng)的點(diǎn)重合,數(shù)軸固定,圓緊貼數(shù)軸沿著數(shù)軸的正方向滾動(dòng),那么數(shù)軸上的數(shù)2018將與圓周上的數(shù)字________重合.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,等邊ABC中,AD是BC邊上的中線,根據(jù)等腰三角形的“三線合一”特性,AD平分BAC,且ADBC,則有BAD=30°,BD=CD=AB.于是可得出結(jié)論“直角三角形中, 30°角所對(duì)的直角邊等于斜邊的一半”.

請(qǐng)根據(jù)從上面材料中所得到的信息解答下列問(wèn)題:

(1)如圖2所示,在ABC中,ACB=90°,BC的垂直平分線交AB于點(diǎn)D,垂足為E,當(dāng)BD=5cm,B=30°時(shí),ACD的周長(zhǎng)=   

(2)如圖3所示,在ABC中,AB=AC,A=120°,D是BC的中點(diǎn),DEAB,垂足為E,那么BE:EA=   

(3)如圖4所示,在等邊ABC中,D、E分別是BC、AC上的點(diǎn),且AE=DC,AD、BE交于點(diǎn)P,作BQAD于Q,若BP=2,求BQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在線段上依次添加1個(gè)點(diǎn),2個(gè)點(diǎn),3個(gè)點(diǎn),……,原線段上所成線段的總條數(shù)如下表:

添加點(diǎn)數(shù)

1

2

3

4

線段總條數(shù)

3

6

10

15

若在原線段上添加n個(gè)點(diǎn),則原線段上所有線段總條數(shù)為( )

A. n+2 B. 1+2+3+…+n+n+1 C. n+1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司招聘職員,對(duì)甲、乙兩位候選人進(jìn)行了面試和筆試,面試中包括形體和口才,筆試中包括專業(yè)水平和創(chuàng)新能力考察,他們的成績(jī)(百分制)如下表:

候選人

面試

筆試

形體

口才

專業(yè)水平

創(chuàng)新能力

86

90

96

92

92

88

95

93

若公司根據(jù)經(jīng)營(yíng)性質(zhì)和崗位要求認(rèn)為:形體、口才、專業(yè)水平、創(chuàng)新能力按照5546的比確定,請(qǐng)計(jì)算甲、乙兩人各自的平均成績(jī),看看誰(shuí)將被錄?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】6分)下面是小馬虎解的一道題

題目:在同一平面上,若BOA=70°,BOC=15°AOC的度數(shù).

解:根據(jù)題意可畫出圖,

∵∠AOC=∠BOABOC

=70°15°

=55°,

∴∠AOC=55°

若你是老師,會(huì)判小馬虎滿分嗎?若會(huì),說(shuō)明理由.若不會(huì),請(qǐng)將小馬虎的的錯(cuò)誤指出,并給出你認(rèn)為正確的解法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,螞蟻在5×5的方格(每個(gè)小方格的邊長(zhǎng)均為1 cm)上沿著網(wǎng)格線運(yùn)動(dòng).它從A處出發(fā)去尋找B,C,D處的伙伴,規(guī)定:向上向右走為正,向下向左走為負(fù).如果從A到B記為:A→B(+1,+4),從B到A記為:B→A(-1,-4),其中第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向,那么圖中:

(1)A→D(________,________);D→B(________,________);C→B(________,________).

(2)若螞蟻的行走路線為A→B→C→D,請(qǐng)計(jì)算螞蟻?zhàn)哌^(guò)的路程.

(3)若螞蟻從A處出發(fā)去尋找伙伴,它的行走路線依次為(+1,+2),(+3,-1),(-2,+2),請(qǐng)?jiān)趫D中標(biāo)出這只螞蟻伙伴的位置E.

(4)在(3)中,若螞蟻每走1 cm需要消耗1.5焦耳的能量,則螞蟻在尋找伙伴E的過(guò)程中總共需要消耗多少焦耳的能量?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】商場(chǎng)為了促銷,推出兩種促銷方式:

方式:所有商品打7.5折銷售:

方式:一次購(gòu)物滿200元送60元現(xiàn)金.

(1)老師要購(gòu)買標(biāo)價(jià)為628元和788元的商品各一件,現(xiàn)有四種購(gòu)買方案:

方案一:628元和788元的商品均按促銷方式①購(gòu)買;

方案二:628元的商品按促銷方式①購(gòu)買,788元的商品按促銷方式②購(gòu)買;

方案三:628元的商品按促銷方式②購(gòu)買,788元的商品按促銷方式①購(gòu)買;

方案四:628元和788元的商品均按促銷方式②購(gòu)買.

你給楊老師提出的最合理購(gòu)買方案是

(2)通過(guò)計(jì)算下表中標(biāo)價(jià)在600元到800元之間商品的付款金額,你總結(jié)出商品的購(gòu)買規(guī)律是

查看答案和解析>>

同步練習(xí)冊(cè)答案