【題目】函數(shù)y=x2+3x+2的圖象如圖1所示,根據(jù)圖象回答問題:
(1)當x時,x2+3x+2>0;
(2)在上述問題的基礎上,探究解決新問題: ①函數(shù)y= 的自變量x的取值范圍是;
②如表是函數(shù)y= 的幾組y與x的對應值.
x | … | ﹣7 | ﹣6 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 3 | 4 | … |
y | … | 5.477… | 4.472… | 2.449… | 1.414… | 0 | 0 | 1.414… | 2.449… | 4.472… | 5.477… | … |
如圖2,在平面直角坐標系xOy中,描出了上表中各對對應值為坐標的點的大概位置,請你根據(jù)描出的點,畫出該函數(shù)的圖象:
③寫出該函數(shù)的一條性質(zhì): .
【答案】
(1)<﹣2或x>﹣1
(2)x≤﹣2或x≥﹣1;;關于直線x=﹣1.5對稱
【解析】解:(1)x2+3x+2>0的解集即拋物線在x軸上方部分對應的自變量的取值范圍, ∴x<﹣2或x>﹣1,
所以答案是:<﹣2或x>﹣1;(2)①由題意可得(x+1)(x+2)≥0,
由(1)可得x≤﹣2或x≥﹣1,
所以答案是:x≤﹣2或x≥﹣1;②如圖:
③由圖象可知關于直線x=﹣1.5對稱,
所以答案是:關于直線x=﹣1.5對稱.
【考點精析】根據(jù)題目的已知條件,利用一次函數(shù)的圖象和性質(zhì)和二次函數(shù)的圖象的相關知識可以得到問題的答案,需要掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xoy中,橢圓 的右頂點和上頂點分別為點A,B,M是線段AB的中點,且 ..
(1)求橢圓的離心率;
(2)若a=2,四邊形ABCD內(nèi)接于橢圓,AB∥CD,記直線AD,BC的斜率分別為k1 , k2 , 求證:k1k2為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.“任意畫一個三角形,其內(nèi)角和是360°”是隨機事件
B.“明天的降水概率為80%”,意味著明天降雨的可能性較大
C.“某彩票中獎概率是1%”,表示買100張這種彩票一定會中獎
D.曉芳拋一枚硬幣10次,有7次正面朝上,當她拋第11次時,正面向上的概率為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標有2,3,5三個數(shù)字.
(1)從這個袋子中任意摸一只球,所標數(shù)字是奇數(shù)的概率是;
(2)從這個袋子中任意摸一只球,記下所標數(shù)字,不放回,再從從這個袋子中任意摸一只球,記下所標數(shù)字.將第一次記下的數(shù)字作為十位數(shù)字,第二次記下的數(shù)字作為個位數(shù)字,組成一個兩位數(shù).求所組成的兩位數(shù)是5的倍數(shù)的概率.(請用“畫樹狀圖”或“列表”的方法寫出過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,點E在邊AD上,∠ABE=45°,BE=DE,連接BD,點P在線段DE上,過點P作PQ∥BD交BE于點Q,連接QD.設PD=x,△PQD的面積為y,則能表示y與x函數(shù)關系的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側(cè)山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF結果精確到米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準碟形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的劇烈為碟高.
(1)拋物線y=x2對應的碟寬為;拋物線y= x2對應的碟寬為;拋物線y=ax2(a>0)對應的碟寬為;拋物線y=a(x﹣3)2+2(a>0)對應的碟寬為;
(2)利用圖(1)中的結論:拋物線y=ax2﹣4ax﹣ (a>0)對應的碟寬為6,求拋物線的解析式.
(3)將拋物線yn=anx2+bnx+cn(an>0)的對應準蝶形記為Fn(n=1,2,3,…),定義F1 , F2 , …..Fn為相似準蝶形,相應的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為 ,且Fn的碟頂是Fn﹣1的碟寬的中點,現(xiàn)在將(2)中求得的拋物線記為y1 , 其對應的準蝶形記為F1 .
①求拋物線y2的表達式;
②若F1的碟高為h1 , F2的碟高為h2 , …Fn的碟高為hn . 則hn= , Fn的碟寬右端點橫坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在校園文化藝術節(jié)中,九年級一班有1名男生和2名女生獲得美術獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術獎和音樂獎的7名學生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com