如圖,點A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.
(1)求m,k的值;
(2)如果M為x軸上一點,N為y軸上一點, 以點A,B,M,N為頂點的四邊形是平行四邊形,試求直線MN的函數(shù)表達式.
(1)m=3,k=12;(2)或
【解析】
試題分析:(1)根據(jù)反比例函數(shù)圖象上的點的坐標的特征可得,即可求得結(jié)果;
(2)存在兩種情況,①當M點在x軸的正半軸上,N點在y軸的正半軸上時,②當M點在x軸的負半軸上,N點在y軸的負半軸上時,根據(jù)平行四邊形的性質(zhì)求解即可.
(1)由題意可知,
解得m1=3,m2=-1(舍去)
∴A(3,4),B(4,3);
∴k=4×3=12;
(2)存在兩種情況,如圖:
①當M點在x軸的正半軸上,N點在y軸的正半軸上時,設M1點坐標為(x1,0),N1點坐標為(0,y1).
∵四邊形AN1M1B為平行四邊形,
∴線段N1M1可看作由線段AB向左平移3個單位,再向下平移3個單位得到的
由(1)知A點坐標為(3,4),B點坐標為(4,3),
∴N1點坐標為(0,1),M1點坐標為(1,0)
設直線M1N1的函數(shù)表達式為,把x=1,y=0代入,解得.
∴直線M1N1的函數(shù)表達式為;
②當M點在x軸的負半軸上,N點在y軸的負半軸上時,設M2點坐標為(x2,0),N2點坐標為(0,y2).
∵AB∥N1M1,AB∥M2N2,AB=N1M1,AB=M2N2,
∴N1M1∥M2N2,N1M1=M2N2.
∴線段M2N2與線段N1M1關于原點O成中心對稱.
∴M2點坐標為(-1,0),N2點坐標為(0,-1).
設直線M2N2的函數(shù)表達式為,把x=-1,y=0代入,解得,
∴直線M2N2的函數(shù)表達式為
所以,直線MN的函數(shù)表達式為或.
考點:反比例函數(shù)的綜合題
點評:此類問題難度較大,在中考中比較常見,一般在壓軸題中出現(xiàn),需特別注意.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
2 |
A、(0,0) | ||||||||
B、(
| ||||||||
C、(1,1) | ||||||||
D、(
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com